Limes aus Limsup ziehen < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:04 Do 27.07.2017 | Autor: | Paivren |
Hallo, dritte Frage für heute:
Wenn ich den Limes Sup eines Produkts von zwei Folgen berechne, und eine Folge davon konvergiert sicher, dann darf man anscheinend die konvergierende Folge als Grenzwert aus dem Lim Sup herausziehen, also zB.
lim sup [mm] |(n+1)a_{n+1}|^{1/n} [/mm] = [mm] \limes_{n\rightarrow\infty} (n+1)^{1/n}*lim [/mm] sup [mm] |a_{n+1}|^{1/n}=1*lim [/mm] sup [mm] |a_{n+1}|^{1/n}
[/mm]
Wie kann man einsehen, dass das gilt? Ich weiß, dass für konvergierende Folgen gilt, dass Lim und LimSup identisch sind.
Aber obige Regel würde damit nur folgen, wenn auch gälte, dass [mm] LimSup(a_{n}*b_{n})=LimSup(a_{n})LimSup(b_{n}), [/mm] aber das gilt ja nicht.
mfG.
|
|
|
|
> Hallo, dritte Frage für heute:
>
> Wenn ich den Limes Sup eines Produkts von zwei Folgen
> berechne, und eine Folge davon konvergiert sicher, dann
> darf man anscheinend die konvergierende Folge als Grenzwert
> aus dem Lim Sup herausziehen, also zB.
>
> lim sup [mm]|(n+1)a_{n+1}|^{1/n}[/mm] = [mm]\limes_{n\rightarrow\infty} (n+1)^{1/n}*lim[/mm]
> sup [mm]|a_{n+1}|^{1/n}=1*lim[/mm] sup [mm]|a_{n+1}|^{1/n}[/mm]
>
> Wie kann man einsehen, dass das gilt? Ich weiß, dass für
> konvergierende Folgen gilt, dass Lim und LimSup identisch
> sind.
> Aber obige Regel würde damit nur folgen, wenn auch gälte,
> dass [mm]LimSup(a_{n}*b_{n})=LimSup(a_{n})LimSup(b_{n}),[/mm] aber
> das gilt ja nicht.
Hallo,
wie du schon richtig bemerkt hast, gilt das nur, wenn eine der beiden Folgen, sagen wir [mm](a_n)[/mm], gegen einen Grenzwert [mm]a>0[/mm] konvergiert. In diesem Fall gibt es eine konvergente Teilfolge [mm](b_{n(k)})[/mm] mit [mm]\lim_{k\to\infty}b_{n(k)}=\limsup b_n=b[/mm]. Diese kann so gewählt werden, dass [mm]b_n
>
> mfG.
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:36 Do 27.07.2017 | Autor: | Paivren |
Alles klar,
vielen Dank :)
|
|
|
|