Lin. Abb. Mehrstufiger Prozess < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Ein Mann will an einem Spielautomaten mit 5 Zuständen spielen. Diese Zustände sind die 5 Einheitsvektoren [mm] e_1,...,e_5 [/mm] des [mm] \IR^5. [/mm] Der Automat springt mit einer Wahrscheinlichkeit von [mm] \bruch{j+i}{15+5i} [/mm] von Zustand [mm] e_i [/mm] nach [mm] e_j. [/mm] Nun erstellt der Mann eine Matrix P [mm] \in \IR^{5x5}, [/mm] so dass
P [mm] e_i [/mm] = [mm] \summe_{j=1}^{5} (\bruch{j+i}{15+5i})e_j [/mm] .
Der Automatik startet in Zustand [mm] e_1 [/mm] und gewonnen hat man, wenn man nach 5 Runden den Zustand [mm] e_5 [/mm] erreicht hat. Die Wahrscheinlichkeit, von Zustand i nach j und anschließend nach k zu kommen ist [mm] \bruch{j+i}{15+5i} \bruch{k+j}{15+5j}. [/mm] Der Mann will nur spielen, wenn die Wahrscheinlichkeit [mm] \ge \bruch{1}{3} [/mm] ist.
Hilfe: Nutzen sie die Matrix P und Matrixmultiplikation. |
Hallo an alle. Ich habe Probleme mit dieser Aufgabe.
Zuerst Verständnisfragen:
Man hat gewonnen, wenn man nach 5 Runden von Startzustand 1 nach Zustand 5 gekommen ist. Es wird also offensichtlich nicht ausgeschlossen, dass es so aussehen könnte: [mm] 1\to 3\to [/mm] 2 [mm] \to3 \to 4\to [/mm] 5, richtig? oder würde nur gehen, dass Zustand i < j ist? Ich weiß nicht, wie dies aussehen könnte.
Nun ja, wenn man nun die Matrix [mm] P\in \IR^5 [/mm] bestimmen will, nutze ich die gegebene Gleichung: P [mm] e_i [/mm] = [mm] \summe_{j=1}^{5} (\bruch{j+i}{15+5i})e_j
[/mm]
Rechte Seite ergibt:
[mm] \vektor{\bruch{1+i}{15+5i} \\ \bruch{2+i}{15+5i} \\ \bruch{3+i}{15+5i} \\ \bruch{4+i}{15+5i} \\ \bruch{5+i}{15+5i}} [/mm] .
Somit muss auch die linke Seite dies ergeben. Also für P gilt zum Beispiel für i=1
P [mm] e_i [/mm] = [mm] \vektor{p_{11} \\ p_{21} \\ p_{31} \\ p_{41} \\ p_{51}} [/mm] = [mm] \vektor{\bruch{2}{20} \\ \bruch{3}{20} \\ \bruch{4}{20} \\ \bruch{5}{20} \\ \bruch{6}{20i}}
[/mm]
Somit ist P für i = 1,2,3,4,5
P = [mm] \pmat{ \bruch{2}{20} & \bruch{3}{25} & \bruch{4}{30} & \bruch{5}{35} & \bruch{6}{40}\\ \bruch{3}{20} & \bruch{4}{25} & \bruch{5}{30} & \bruch{6}{35} & \bruch{7}{40}\\ \bruch{3}{20} & \bruch{5}{25} & \bruch{6}{30} & \bruch{7}{35} & \bruch{8}{40}\\ \bruch{5}{20} & \bruch{6}{25} & \bruch{7}{30} & \bruch{8}{35} & \bruch{9}{40} \\ \bruch{6}{20} & \bruch{7}{25} & \bruch{8}{30} & \bruch{9}{35} & \bruch{10}{40} } [/mm]
Das ist die Matrix P [mm] \in \IR^{5x5}. [/mm]
Jetzt weiß ich aber leider nicht wie es weiter geht.
Die genutzte Formel ändert sich nun leicht P' [mm] e_j [/mm] = [mm] \summe_{k=1}^{5} (\bruch{k+j}{15+5j})e_k.
[/mm]
Ich weiß jetzt nun nicht, welches Verhältnis zwischen i,j,k besteht. Die rechte Seite gibt wieder einen Vektor [mm] \in \IR^5 [/mm] . Damit auch die linke Seite. Aber die Matrix P' müsste sich doch von P irgendwie unterscheiden oder?
Ich weiß leider nicht, was ich nun wie fortführen kann.
Ich hoffe ihr könnt mir helfen.
Liebe Grüße,
RoughNeck
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 11:34 Mo 17.12.2012 | Autor: | RoughNeck |
Ich bräuchte nur eine kleine Hilfe, wie ich Vorgehen kann. Bzw eine kleine Aufgabenanalyse und Erklärungen der Zustände... Keine großartigen Rechenschritte oder so...
Wäre echt sehr nett. Liebe Grüße
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 15:20 Di 18.12.2012 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|