Münzenwurf < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:02 Sa 19.11.2011 | Autor: | GeMir |
Aufgabe | Wir haben zwei Münzen: eine faire, mit [mm] P("Kopf")=\frac{1}{2}, [/mm] und eine getrickste mit P("Kopf")=1. Wir wählen eine Münze mit Wahrscheinlichkeit [mm] \frac{1}{2}.
[/mm]
a) Wir werfen eine der Münzen und erhalten "Kopf". Wie groß ist die Wahrscheinlichkeit, dass es eine getrickste Münze ist?
b) Wir werfen dieselbe Münze noch ein mal und erhalten "Kopf". Wie groß ist nun die Wahrscheinlichkeit, dass es eine getrickste Münze ist? |
Während im Teil (a) die Lösung eine "straight forward"-Anwendung der Formel der bedingten Wahrscheinlichkeit mit dem Ergebins [mm] \frac{2}{3} [/mm] ist, weiß ich im Teil (b) gar nicht, wie ich anfangen soll.
Klar, gesucht ist die Wahrscheinlichkeit P("Getrickst"|"zwei mal Kopf hintereinander") und stochastisch unabhängig sind beide Experimente auch...
|
|
|
|
> Wir haben zwei Münzen: eine faire, mit
> [mm]P("Kopf")=\frac{1}{2},[/mm] und eine getrickste mit P("Kopf")=1.
> Wir wählen eine Münze mit Wahrscheinlichkeit
> [mm]\frac{1}{2}.[/mm]
>
> a) Wir werfen eine der Münzen und erhalten "Kopf". Wie
> groß ist die Wahrscheinlichkeit, dass es eine getrickste
> Münze ist?
>
> b) Wir werfen dieselbe Münze noch ein mal und erhalten
> "Kopf". Wie groß ist nun die Wahrscheinlichkeit, dass es
> eine getrickste Münze ist?
> Während im Teil (a) die Lösung eine "straight
> forward"-Anwendung der Formel der bedingten
> Wahrscheinlichkeit mit dem Ergebins [mm]\frac{2}{3}[/mm] ist, weiß
> ich im Teil (b) gar nicht, wie ich anfangen soll.
>
> Klar, gesucht ist die Wahrscheinlichkeit
> P("Getrickst"|"zwei mal Kopf hintereinander") und
> stochastisch unabhängig sind beide Experimente auch...
(b) geht im Prinzip genauso wie (a) mit der Formel von Bayes.
Die Bedingten Wahrscheinlichkeiten P(zweimal Kopf|getrickst) und P(zweimal Kopf|fair) lasse sich bestimmen und damit hast du eigentlich schon alles, was du brauchst.
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 16:31 Sa 19.11.2011 | Autor: | GeMir |
Also:
[mm] P(\text{2 mal Kopf}|\text{getrickst}) [/mm] = [mm] 1\\
[/mm]
[mm] P(\text{2 mal Kopf}|\text{fair}) [/mm] = [mm] \frac{1}{2}\cdot\frac{1}{2}=\frac{1}{4}
[/mm]
[mm] \ldots [/mm] und dann einfach mit Bayes:
[mm] P(\text{getrickst}|\text{2 mal Kopf}) [/mm] = [mm] \frac{P(\text{2 mal Kopf}|\text{getrickst})P(\text{2 mal Kopf})}{P(\text{getrickst})}
[/mm]
[mm] \ldost [/mm] wobei [mm] P(\text{2 mal Kopf}) [/mm] = 1 + [mm] \frac{1}{4} [/mm] und [mm] P(\text{getrikst}) [/mm] = [mm] \frac{1}{2}...
[/mm]
|
|
|
|
|
> Also:
>
> [mm]P(\text{2 mal Kopf}|\text{getrickst})[/mm] = [mm]1\\[/mm]
> [mm]P(\text{2 mal Kopf}|\text{fair})[/mm] =
> [mm]\frac{1}{2}\cdot\frac{1}{2}=\frac{1}{4}[/mm]
>
> [mm]\ldots[/mm] und dann einfach mit Bayes:
>
> [mm]P(\text{getrickst}|\text{2 mal Kopf})[/mm] = [mm]\frac{P(\text{2 mal Kopf}|\text{getrickst})P(\text{2 mal Kopf})}{P(\text{getrickst})}[/mm]
andersrum: [mm] P(\text{getrickst}|\text{2 mal Kopf})=\frac{P(\text{2 mal Kopf}|\text{getrickst})P(\text{getrickst})}{P(\text{zweimal Kopf})},
[/mm]
wobei im Nenner [mm] P(\text{zweimal Kopf})=P(getrickst)*P(zweimal [/mm] Kopf|getrickst)+P(fair)*P(zweimal Kopf|fair)
>
> [mm]\ldost[/mm] wobei [mm]P(\text{2 mal Kopf})[/mm] = 1 + [mm]\frac{1}{4}[/mm] und
> [mm]P(\text{getrikst})[/mm] = [mm]\frac{1}{2}...[/mm]
>
|
|
|
|