www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Nachdifferenzieren
Nachdifferenzieren < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nachdifferenzieren: Frage
Status: (Frage) beantwortet Status 
Datum: 16:13 Do 30.06.2005
Autor: Yuki

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Prinzipiell hab ich das mit der Ableitung ja verstanden, also, Kettenregel usw. Nur das mit dem Nachdifferenzieren hab ich noch nicht ganz raus. Meine Frage ist: Wann muss ich nachdifferenzieren und wie sieht das aus, vor allem, wenn mehrere Regeln angewandt werden müssen?

danke

        
Bezug
Nachdifferenzieren: Antwort
Status: (Antwort) fertig Status 
Datum: 16:46 Do 30.06.2005
Autor: TranVanLuu

Hallo und

[willkommenmr]

Hm, warum man das machen muss, kann ich nicht so einfach erklären...das erklärt sich mit der Herleitung der Regel....
Aber dass man es machen muss wird schnell einsichtig, wenn man sich z.B. folgedens betrachtet:

[mm] (x^2)^3 [/mm]

würde man nur die äußere Ableitung bilden, käme man auf 3 * [mm] ({x}^2)^2 [/mm] = [mm] 3x^4 [/mm]
wandelt man aber vorher  in x^(6) um erhält man als Ableitung [mm] 6x^5, [/mm] das zeigt also, dass da noch was gemacht werden muss, damit es richtig wird.

Wie man herangehen kann:

Nehmen wir als Beispiel:

f(x) = [mm] e^x [/mm] * [mm] \bruch{1}{x^2-x} [/mm]
jetzt legen wir fest:

[mm] u=e^x [/mm] und v= [mm] \bruch{1}{x^2-x} \Rightarrow [/mm] f(x) = u * v (wobei u und v beide von x abhängen!!)

Damit ist f'(x) = u' * v + v' *u (Produktregel)

nun ist v aber wieder eine Verkettung, wenn du z.B. z = [mm] x^2-x [/mm] setzt, dann haben wir v = [mm] \bruch{1}{z} [/mm] und v' = z' * [mm] (\bruch{-1}{z^2} [/mm] Kettenregel. So hast du alles relativ übersichtlich geschrieben und erhälst nun:

f'(x) = u' * v + z' * [mm] (\bruch{-1}{z^2} [/mm] * u

das sieht jetzt vielleicht furchtbar aus, weil soviele Variablen vorkommen, aber wenn du Rechnungen z.B. auf der linken Seite des Heftes/Zettels durchführst und dir getrennt davon auf der rechten Seite sauber notierst, was du wie ersetzt hast, kannst du das nachher sehr schön einfach zusammensuchen und behälst eine gute Übersicht!

[mm] \Rightarrow [/mm] f'(x) = [mm] e^x [/mm] * [mm] \bruch{1}{x^2-x} [/mm] + [mm] (2x-1)*\bruch{-1}{(x^2-x)^2} [/mm]

Wichtig dabei ist, dass du alles, was von x abhängt, auch immer so behandelst, also dass z keine konstante ist, die wegfällt, sondern, dass du erstmal z' hinschreibst und in einem nächsten Schritt z'(x) berechnest!!

Ich hoffe, das hilft dir etwas weiter

Gruß Tran

Bezug
        
Bezug
Nachdifferenzieren: Faustregel
Status: (Antwort) fertig Status 
Datum: 17:54 Do 30.06.2005
Autor: Zwerglein

Hi, Yuki,

am besten, Du hältst Dich zunächst mal an die Faustregel:
"Klammern werden nachdifferenziert!"

Beispiele:

(1) f(x) = [mm] (x^{2}-3)^{5}; [/mm]  => f'(x) = [mm] 5*(x^{2}-3)^{4}*2x [/mm] = [mm] 10x*(x^{2}-3)^{4} [/mm]

(2) f(x) = sin(3x+4);   => f'(x) = cos(3x+4)*3 = 3*cos(3x+4)

(3) f(x) = [mm] e^{x^{2}+x} [/mm]  schreib' ich z.B. immer so:   f(x) = [mm] e^{(x^{2}+x)}; [/mm]

  =>  f'(x) =  [mm] e^{(x^{2}+x)}*(2x+1) [/mm]  = [mm] (2x+1)*e^{(x^{2}+x)} [/mm]

(4) f(x) = [mm] ln(x^{4}+2) [/mm]  =>  f'(x) = [mm] \bruch{1}{x^{4}+2}*4x^{3} [/mm] = [mm] \bruch{4x^{3}}{x^{4}+2} [/mm]

Kommst Du nun ein bissl weiter?



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.mathebank.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]