Newtonsche Mechanik < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo, ich habe Probleme mit der folgenden Aufgabe:
Die newtonsche Mechanik ist eine physikalische Theorie, die besagt, dass das Universum aus $N$ Materiepunkten (genannt Teilchen) besteht, die sich im Laufe der Zeit in einem $3$ - dimensionalen euklidischen Raum bewegen (in dem wir ein kartesisches Koordinatensystem einführen). Dabei gehorcht die position $q_{k}(t) \in \mathbb{R}^{3}$ des $k$ - Teilchens zur Zeit $t$ der Bewegungsgleichung $m_{k} \frac{d^{2} q_{k}}{dt^{2}} = \sum\limits_{j = 1, j \neq k} G m_{j} m_{k} \frac{q_{j} - q_{k}}{\vert \vert q_{j} - q_{k} \vert \vert^{3}} - \sum\limits_{j = 1, j \neq k} \frac{e_{j} e_{k}}{4 \pi \epsilon_{0}} \frac{q_{j} - q_{k}}{\vert \vert q_{j} - q_{k} \vert \vert^{3}}$
Hierbei ist $\vert \vert \cdot \vert \vert$ die euklidische Norm in $\mathbb{R}^{3}, G$ und $\varepsilon_{0}$ sind Naturkonstanten und $m_{k} > 0, e_{k}$ Konstanten, genannt die Masse und die elektrische Ladung des $k$ - ten Teilchens.
Die Energie des Universums zur Zeit $t$ ist definiert als
$E(t) = \sum\limits_{k = 1}^{N} \frac{m_{k}}{2} \left \| \frac{d q_{k}}{dt} \right \|^{2} - \sum\limits_{j,k = 1, j < k} \left ( G m_{j} m_{k} - \frac{e_{j} e_{k}}{4 \pi \varepsilon_{0}} \right ) \frac{1}{\vert \vert q_{j} - q_{k} \vert \vert}$.
Zeigen Sie: $E$ ist eine Erhaltungsgröße, d.h. zeitunabhängig.
Tipp: Berechnen Sie $dE/dt$.
Mein Ansatz:
Bevor ich mit meinem Ansatz anfange, habe ich zwei kleine Fragen:
(1) Wie zeigt man eigentlich, dass eine Funktion zeitunabhängig ist? Als Tipp steht zwar ableiten, aber ich weiß nicht warum man das sollte. Könnte mir das jemand vielleicht erklären?
(2) Für ein beliebiges $k \in \{1, \ldots, N \}$ ist $q_{k}: \mathbb{R}^{3}_{\ge 0} \rightarrow \mathbb{R}^{3}, t \mapsto \left( \begin{array}{c} q_{k}^{(1)}(t) \\\ q_{k}^{(2)}(t) \\\ q_{k}^{(3)}(t) \\\ \end{array}\right)$ eine Kurve.
Werden diese Kurven in der Physik immer als differenzierbar in jedem Punkt vorausgesetzt?
Ich habe $E(t)$ umgeschrieben:
$E(t) = \sum\limits_{k = 1}^{N} \frac{m_{k}}{2} \left \| \frac{d q_{k}(t)}{dt} \right \|^{2} - \sum\limits_{j,k = 1, j < k} \left ( G m_{j} m_{k} - \frac{e_{j} e_{k}}{4 \pi \varepsilon_{0}} \right ) \frac{1}{\vert \vert q_{j}(t) - q_{k}(t) \vert \vert}$
$= \sum\limits_{k = 1}^{N} \frac{m_{k}}{2} \sqrt{\sum\limits_{l = 1}^{3} \frac{d q_{k}^{(l)}(t)}{dt}}^{2} - \sum\limits_{j,k = 1, j < k} \left ( G m_{j} m_{k} - \frac{e_{j} e_{k}}{4 \pi \varepsilon_{0}} \right ) \frac{1}{\sqrt{\sum\limits_{l = 1}^{3} \left ( q_{j}^{(l)}(t) - q_{k}^{(l)}(t)\right )}}$
$ = \sum\limits_{k = 1}^{N} \frac{m_{k}}{2} \sum\limits_{l = 1}^{3} \frac{d q_{k}^{(l)}(t)}{dt} - \sum\limits_{j,k = 1, j < k} \left ( G m_{j} m_{k} - \frac{e_{j} e_{k}}{4 \pi \varepsilon_{0}} \right ) \frac{1}{\left ( \sum\limits_{l = 1}^{3} \left ( q_{j}^{(l)}(t) - q_{k}^{(l)}(t)\right ) \right )^{\frac{1}{2}}}$
$ = \sum\limits_{k = 1}^{N} \frac{m_{k}}{2} \sum\limits_{l = 1}^{3} \frac{d q_{k}^{(l)}(t)}{dt} - \sum\limits_{j,k = 1, j < k} \left ( G m_{j} m_{k} - \frac{e_{j} e_{k}}{4 \pi \varepsilon_{0}} \right ) \left ( \sum\limits_{l = 1}^{3} \left ( q_{j}^{(l)}(t) - q_{k}^{(l)}(t)\right ) \right )^{- \frac{1}{2}}$
Die Ableitung lautet dann:
$ E'(t) = \sum\limits_{k = 1}^{N} \frac{m_{k}}{2} \sum\limits_{l = 1}^{3} \frac{d^{2} q_{k}^{(l)}(t)}{dt^{2}} - \sum\limits_{j,k = 1, j < k} \left ( G m_{j} m_{k} - \frac{e_{j} e_{k}}{4 \pi \varepsilon_{0}} \right ) \cdit \left ( - \frac{1}{2} \right) \cdot \left ( \sum\limits_{l = 1}^{3} \left ( q_{j}^{(l)}(t) - q_{k}^{(l)}(t)\right ) \right )^{- \frac{3}{2}} \cdot \sum\limits_{l = 1}^{3} \left ( \frac{d q_{j}^{(l)}(t)}{dt} - \frac{d q_{k}^{(l)}(t)}{dt}}\right )$
Aber ich weiß nicht, was ich mit der Ableitung machen soll. Kann mir da jemand einen Tipp geben?
Ich bedanke mich im Voraus.
gruß, Andrej
|
|
|
|
Hiho,
> (1) Wie zeigt man eigentlich, dass eine Funktion
> zeitunabhängig ist? Als Tipp steht zwar ableiten, aber ich
> weiß nicht warum man das sollte. Könnte mir das jemand
> vielleicht erklären?
Was passiert denn mit einer Funktion, wenn du sie nach einer Variablen ableitest, von der sie gar nicht abhängt?
Also wenn du bspw. [mm] $\frac{d}{dx}f(y)$ [/mm] berechnest.
Gilt auch die Umkehrung?
> Werden diese Kurven in der Physik immer als differenzierbar in jedem Punkt vorausgesetzt?
Ja.
Die Änderung des Ortes ist die Geschwindigkeit, die Änderung der Geschwindigkeit die Beschleunigung.
Lässt sich nun ein Teilchen von jetzt auf gleich von Null auf 100 beschleunigen?
Kann ein Teilchen von jetzt auf Gleich um die Ecke fliegen, ohne dass es eine Kurve beschreiben muss?
Das ist letztendlich die Intuition dahinter, warum es sinnvoll ist, das vorauszusetzen.
> Die Ableitung lautet dann:
>
> [mm]E'(t) = \sum\limits_{k = 1}^{N} \frac{m_{k}}{2} \sum\limits_{l = 1}^{3} \frac{d^{2} q_{k}^{(l)}(t)}{dt^{2}} - \sum\limits_{j,k = 1, j < k} \left ( G m_{j} m_{k} - \frac{e_{j} e_{k}}{4 \pi \varepsilon_{0}} \right ) \cdit \left ( - \frac{1}{2} \right) \cdot \left ( \sum\limits_{l = 1}^{3} \left ( q_{j}^{(l)}(t) - q_{k}^{(l)}(t)\right ) \right )^{- \frac{3}{2}} \cdot \sum\limits_{l = 1}^{3} \left ( \frac{d q_{j}^{(l)}(t)}{dt} - \frac{d q_{k}^{(l)}(t)}{dt}}\right )[/mm]
Auch wenn das fürs Ableiten schöner war, die Norm umzuschreiben: Lass die Norm mal stehen (bzw. ersetze wieder). Dann sehen die Terme nicht so unübersichtlich aus… Grundsätzlich solltest du die Ableitung der Norm kennen, d.h. was bspw. [mm] $\frac{d}{dt} [/mm] ||x(t)||$ ist. Das spart dir einen Haufen Zeit,
> Aber ich weiß nicht, was ich mit der Ableitung machen
> soll. Kann mir da jemand einen Tipp geben?
Verwende die Bewegungsgleichung.
Gruß,
Gono
|
|
|
|