Notwendige und hinreichende Kriterien für Extremwerte < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 13:49 Do 11.03.2004 | Autor: | Ute |
Warum nennt man f"(a) auch die Krümmung des Graphen/der Funktion in a?
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:18 Do 11.03.2004 | Autor: | Julius |
Liebe Ute!
Wir wollen es nicht zu kompliziert, sondern anschaulich machen.
Wenn man an einem Punkt [mm]f''(a)>0[/mm] hat, dann bedeutet das, dass die Steigung der Funktion in einer Umgebung von [mm]a[/mm] von links nach rechts immer größer wird. Stell dir mal den Graphen einer Funktion vor, deren Steigung immer größer wird und "durchfahre" diese Kurve mal von links nach rechts. Dann machst du ganz anschaulich eine Linkskurve. Man sagt, die Kurve hat eine Linkskrümmung. Je betraglich größer die zweite Ableitung ist, desto "steiler" wird die Kurve, d.h. desto größer ist die Krümmung.
Wenn man an einem Punkt [mm]f''(a)<0[/mm] hat, dann bedeutet das, dass die Steigung der Funktion in einer Umgebung von [mm]a[/mm] von links nach rechts immer kleiner wird. Stell dir mal den Graphen einer Funktion vor, deren Steigung immer kleiner wird und "durchfahre" diese Kurve mal von links nach rechts. Dann machst du ganz anschaulich eine Rechtskurve. Man sagt, die Kurve hat eine Rechtskrümmung. Je betraglich größer die zweite Ableitung ist, desto "steiler" wird die Kurve, d.h. desto größer ist die Krümmung.
Wenn auf einem gewissen Bereich [mm]f''(x)=0[/mm] gilt, dann ändert sich die Steigung der Funktion [mm]f[/mm] in diesem Bereich überhaupt nicht: man hat eine Gerade, also gar keine Krümmung.
Anschaulich einigermaßen klar?
Liebe Grüße
julius
|
|
|
|