www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differenzialrechnung" - Notwendige und hinreichende Kriterien für Extremwerte
Notwendige und hinreichende Kriterien für Extremwerte < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Notwendige und hinreichende Kriterien für Extremwerte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:49 Do 11.03.2004
Autor: Ute

Warum nennt man f"(a) auch die Krümmung des Graphen/der Funktion in a?

        
Bezug
Notwendige und hinreichende Kriterien für Extremwerte: Antwort
Status: (Antwort) fertig Status 
Datum: 14:18 Do 11.03.2004
Autor: Julius

Liebe Ute!

Wir wollen es nicht zu kompliziert, sondern anschaulich machen.

Wenn man an einem Punkt [mm]f''(a)>0[/mm] hat, dann bedeutet das, dass die Steigung der Funktion in einer Umgebung von [mm]a[/mm] von links nach rechts immer größer wird. Stell dir mal den Graphen einer Funktion vor, deren Steigung immer größer wird und "durchfahre" diese Kurve mal von links nach rechts. Dann machst du ganz anschaulich eine Linkskurve. Man sagt, die Kurve hat eine Linkskrümmung. Je betraglich größer die zweite Ableitung ist, desto "steiler" wird die Kurve, d.h. desto größer ist die Krümmung.

Wenn man an einem Punkt [mm]f''(a)<0[/mm] hat, dann bedeutet das, dass die Steigung der Funktion in einer Umgebung von [mm]a[/mm] von links nach rechts immer kleiner wird. Stell dir mal den Graphen einer Funktion vor, deren Steigung immer kleiner wird und "durchfahre" diese Kurve mal von links nach rechts. Dann machst du ganz anschaulich eine Rechtskurve. Man sagt, die Kurve hat eine Rechtskrümmung. Je betraglich größer die zweite Ableitung ist, desto "steiler" wird die Kurve, d.h. desto größer ist die Krümmung.

Wenn auf einem gewissen Bereich [mm]f''(x)=0[/mm] gilt, dann ändert sich die Steigung der Funktion [mm]f[/mm] in diesem Bereich überhaupt nicht: man hat eine Gerade, also gar keine Krümmung.

Anschaulich einigermaßen klar? :-)

Liebe Grüße
julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.mathebank.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]