Nullstellen < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:42 Mi 05.01.2022 | Autor: | Trikolon |
Aufgabe | ,,Wenn eine ganzrationale Funktion f n-ten Grades nur positive Koeffizienten besitzt, so kann f keine positiven Nullstellen haben.'' |
Hallo,
folgende Überlegung ist mir in den Sinn gekommen. Bisher konnte ich auch noch kein Gegenbeispiel finden. Anschaulich sollte die Aussage auch richtig sein. Trotzdem möchte ich auf Nummer sicher gehen und hier noch mal nachfragen, ob das so stimmt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:43 Mi 05.01.2022 | Autor: | statler |
> ,,Wenn eine ganzrationale Funktion f n-ten Grades nur
> positive Koeffizienten besitzt, so kann f keine positiven
> Nullstellen haben.''
> Hallo,
> folgende Überlegung ist mir in den Sinn gekommen. Bisher
> konnte ich auch noch kein Gegenbeispiel finden. Anschaulich
> sollte die Aussage auch richtig sein. Trotzdem möchte ich
> auf Nummer sicher gehen und hier noch mal nachfragen, ob
> das so stimmt.
Auch hallo!
Mir ist nicht ganz klar, was hier die Aufgabe ist und was die Überlegung. Was oben als Aufgabe steht, ist eine Behauptung oder eine Aussage, und die Aufgabe könnte sein, ihre Wahrheit zu beweisen.
Überlegungen dazu können natürlich darin bestehen, ein Gegenbeispiel zu finden; wenn das klappte, wäre die Behauptung widerlegt, und man bräuchte über einen Beweis nicht weiter nachzudenken. Da es aber nicht geklappt hat, müßte man sich vielleicht mal an einem Beweis versuchen.
Sei also $f(x) = [mm] a_{n}x^{n} [/mm] + ... + [mm] a_{1}x [/mm] + [mm] a_{0}$ [/mm] mit [mm] $a_{i} [/mm] > 0$.
Ist jetzt $x > 0$, so ist die rechte Seite offenbar (oder besser nach den Rechenregeln in geordneten Körpern) auch $> 0$, also ist für diese $x$ $f(x) [mm] \not= [/mm] 0$.
Gruß Dieter
|
|
|
|