Partialbruchzerlegung < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 20:33 Mi 14.03.2007 | Autor: | hooover |
Aufgabe | Berechne mit Hilfe von Partialbruchzerlegung den Wert der Reihe:
[mm] \summe_{i=2}^{n}\bruch{1}{i^2-1}:=\limes_{n\rightarrow\infty}\summe_{i=2}^{n}\bruch{1}{i^2-1} [/mm] |
Hallo Leute, ich hab hierzu eine Lösungsskizze und kann auch bis zum Punkt mit der Indexverschiebung alles Nachvollziehen.
Ich würde mich aber riesig freuen wenn mir das mal jemand genau erläutern kann was und vorallem warum hier genau gemacht wurde.
[mm] \summe_{i=2}^{n}\bruch{1}{i^2-1}:=\limes_{n\rightarrow\infty}\summe_{i=2}^{n}\bruch{1}{i^2-1}=\summe_{i=2}^{n}\bruch{1}{(i-1)(i+1)}
[/mm]
[mm] \bruch{1}{(i+1)(i-1)}=\bruch{A}{i+1}+\bruch{B}{i-1}
[/mm]
[mm] A=\bruch{-1}{2}
[/mm]
[mm] B=\bruch{1}{2}
[/mm]
[mm] \limes_{n\rightarrow\infty}\summe_{i=2}^{n}\bruch{1}{i^2-1}=\summe_{i=2}^{n}\bruch{1}{(i-1)(i+1)}=\limes_{n\rightarrow\infty}(\summe_{i=2}^{n}\bruch{1}{2(i+1)}+\summe_{i=2}^{n}\bruch{-1}{2(i-1)})
[/mm]
bis hier hin ab ich es noch selbst geschafft, so jetzt versteh ich aber nicht mehr was hier folgt:
[mm] \limes_{n\rightarrow\infty}(\bruch{1}{2}+\bruch{1}{4}+\summe_{i=4}^{n}\bruch{1}{2(i+1)}+\summe_{i=2}^{n}\bruch{-1}{2(i-1)})=\limes_{n\rightarrow\infty}(\bruch{3}{4}+\summe_{i=2}^{n-2}\bruch{1}{2(i+1)}+\summe_{i=2}^{n-2}\bruch{-1}{2(i+1)}-\bruch{1}{2n}-\bruch{1}{2n+2})
[/mm]
[mm] =\bruch{3}{4}
[/mm]
bitte erklär mir doch einer warum man das (Indexverschiebung) hier macht und auf was man da achten muß
vielen Dank gruß hooover
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 21:21 Mi 14.03.2007 | Autor: | leduart |
Hallo hoover
> Berechne mit Hilfe von Partialbruchzerlegung den Wert der
> Reihe:
>
> [mm]\summe_{i=2}^{n}\bruch{1}{i^2-1}:=\limes_{n\rightarrow\infty}\summe_{i=2}^{n}\bruch{1}{i^2-1}[/mm]
> Hallo Leute, ich hab hierzu eine Lösungsskizze und kann
> auch bis zum Punkt mit der Indexverschiebung alles
> Nachvollziehen.
> Ich würde mich aber riesig freuen wenn mir das mal jemand
> genau erläutern kann was und vorallem warum hier genau
> gemacht wurde.
>
> [mm]\summe_{i=2}^{n}\bruch{1}{i^2-1}:=\limes_{n\rightarrow\infty}\summe_{i=2}^{n}\bruch{1}{i^2-1}=\summe_{i=2}^{n}\bruch{1}{(i-1)(i+1)}[/mm]
>
> [mm]\bruch{1}{(i+1)(i-1)}=\bruch{A}{i+1}+\bruch{B}{i-1}[/mm]
>
> [mm]A=\bruch{-1}{2}[/mm]
>
> [mm]B=\bruch{1}{2}[/mm]
>
> [mm]\limes_{n\rightarrow\infty}\summe_{i=2}^{n}\bruch{1}{i^2-1}=\summe_{i=2}^{n}\bruch{1}{(i-1)(i+1)}=\limes_{n\rightarrow\infty}(\summe_{i=2}^{n}\bruch{1}{2(i+1)}+\summe_{i=2}^{n}\bruch{-1}{2(i-1)})[/mm]
>
> bis hier hin ab ich es noch selbst geschafft, so jetzt
> versteh ich aber nicht mehr was hier folgt:
1. Schritt: aus der ersten Summe die 2 ersten Summanden rausgeholt, deshalb faengt sie jetzt bei 4 statt bei 2 an.
2. Schritt:setze Zeitweise k=i-2, dann folgt aus i=4 k=2, i=n k=n-2 und statt i+1 hast du k-1
Also wird aus
[mm] \summe_{i=4}^{n}\bruch{1}{2(i+1)}=\summe_{k=2}^{n}\bruch{1}{2(k-1)}
[/mm]
Da es auf den Namen der Summationsindexes nicht ankommt, kannst du ihn am Schluss wieder i nennen.
(die Idee dahinter war, denselben Ausdruck wie in der 2. Summe zu haben, ich habe also in Wirklichkeit i+1=k-1 gesetzt und daraus k=i-2)
Zeigen will ich, dass alle Zwischenteile der urspruenglichen Summe wegfallen, wenn du den Anfang aufschreibst, kannst du das einfach sehen.)
3.Schritt: bis auf die obere Grenze sind die 2 Summen jetzt gleich, also nehm ich bei der 2. Summe die 2 letzten Glieder weg und schreib sie einzeln. jetzt noch das -1 aus der 2. summe rausholen und man sieht sie sind entgegengesetzt gleich, heben sich also weg. bleiben die 2ersten=3/4 und die 2 letzten ,die fuer n gegen [mm] \infty [/mm] wegfallen.
Das ganze ist nur, um formal genau zu beweisen, dass sich bei dieser "Teleskopsumme fast alles weghebt. Wenn du den Anfang ohne Summenzeichen schreibst, siehst du das auch und kannst einen ungenauen Beweis mit...... machen.
[mm]\limes_{n\rightarrow\infty}(\bruch{1}{2}+\bruch{1}{4}+\summe_{i=4}^{n}\bruch{1}{2(i+1)}+\summe_{i=2}^{n}\bruch{-1}{2(i-1)})=\limes_{n\rightarrow\infty}(\bruch{3}{4}+\summe_{i=2}^{n-2}\bruch{1}{2(i+1)}+\summe_{i=2}^{n-2}\bruch{-1}{2(i+1)}-\bruch{1}{2n}-\bruch{1}{2n+2})[/mm]
>
> [mm]=\bruch{3}{4}[/mm]
>
Gruss leduart
|
|
|
|