Partielle Spur < Funktionalanalysis < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 17:40 Mo 27.12.2010 | Autor: | wee |
Aufgabe | Auf einem zusammengesetzten Hilbertraum [mm] $H=H_1\otimes H_2$ [/mm] ist für einen Operator [mm] $\rho=\rho_1\otimes\rho_2\in L(H_1\otimes H_2)$ [/mm] die partielle Spur durch [mm] $tr_2(\rho)=\rho_1tr_2(\rho_2)\in L(H_1)$ [/mm] definiert.
Zeige:
i) Falls [mm] $\rho_1\in L(H_1)$ [/mm] und [mm] $\rho_2\in L(H_2)$ [/mm] Dichteoperatoren sind [mm] ($tr_1(\rho_1)=1=tr_2(\rho_2)$, $\rho_1, \rho_2\geq [/mm] 0$), so ist auch [mm] $\rho=\rho_1\otimes\rho_2$ [/mm] ein Dichteoperator in [mm] $L(H_1\otimes H_2)$.
[/mm]
ii) Falls [mm] $\rho\in L(H_1\otimes H_2)$ [/mm] ein Dichteoperator ist, so ist auch [mm] $\rho_1=tr_2(\rho)$ [/mm] ein Dichteoperator in [mm] L(H_1). [/mm] |
Hallo,
bei der Aufgabe glaube ich den ersten Teil schon gezeigt zu haben. Es gilt
[mm] $$tr(\rho)=tr_1(\rho_1)tr(\rho_2)=1*1=1$$
[/mm]
und für alle [mm] $\psi_1\in H_1$ [/mm] und [mm] $\psi_2\in H_2$
[/mm]
[mm] $$\langle \rho_1\otimes \rho_2\psi_1\otimes\psi_2,\psi_2\otimes\psi_1\rangle=\langle\rho_1\psi_1,\psi_1\rangle\langle\rho_2\psi_2,\psi_2\rangle\geq [/mm] 0.$$
Bei den zweiten Aufgabenteil will mir allerdings nichts gelingen. Ich weiß dabei nicht, wie ich die Eigenschaften von [mm] \rho [/mm] als Dichteoperator gewinnbringend in die Definition der partiellen Spur einsetzten soll, um die Aussage zu zeigen.
Vielleicht kann mir hier jemand weiter Helfen. Dafür wäre ich sehr dankbar!
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 15:35 Di 28.12.2010 | Autor: | felixf |
Moin!
> Auf einem zusammengesetzten Hilbertraum [mm]H=H_1\otimes H_2[/mm]
> ist für einen Operator [mm]\rho=\rho_1\otimes\rho_2\in L(H_1\otimes H_2)[/mm]
> die partielle Spur durch [mm]tr_2(\rho)=\rho_1tr_2(\rho_2)\in L(H_1)[/mm]
> definiert.
> Zeige:
> i) Falls [mm]\rho_1\in L(H_1)[/mm] und [mm]\rho_2\in L(H_2)[/mm]
> Dichteoperatoren sind ([mm]tr_1(\rho_1)=1=tr_2(\rho_2)[/mm], [mm]\rho_1, \rho_2\geq 0[/mm]),
> so ist auch [mm]\rho=\rho_1\otimes\rho_2[/mm] ein Dichteoperator in
> [mm]L(H_1\otimes H_2)[/mm].
>
> ii) Falls [mm]\rho\in L(H_1\otimes H_2)[/mm] ein Dichteoperator ist,
> so ist auch [mm]\rho_1=tr_2(\rho)[/mm] ein Dichteoperator in
> [mm]L(H_1).[/mm]
>
> Hallo,
>
> bei der Aufgabe glaube ich den ersten Teil schon gezeigt zu
> haben. Es gilt
> [mm]tr(\rho)=tr_1(\rho_1)tr(\rho_2)=1*1=1[/mm]
> und für alle [mm]\psi_1\in H_1[/mm] und [mm]\psi_2\in H_2[/mm]
> [mm]\langle \rho_1\otimes \rho_2\psi_1\otimes\psi_2,\psi_2\otimes\psi_1\rangle=\langle\rho_1\psi_1,\psi_1\rangle\langle\rho_2\psi_2,\psi_2\rangle\geq 0.[/mm]
Wenn die Spur und das Skalarprodukt so definiert ist, dann bist du fast fertig.
Du hast naemlich vergessen, dass nicht jeder Vektor in [mm] $H_1 \otimes H_2$ [/mm] die Form [mm] $\psi_1 \otimes \psi_2$ [/mm] hat. Die allgemeine Form ist [mm] $\sum_{i=1}^n \psi_{1i} \otimes \psi_{2i}$.
[/mm]
Rechne es mal damit nach.
> Bei den zweiten Aufgabenteil will mir allerdings nichts
> gelingen. Ich weiß dabei nicht, wie ich die Eigenschaften
> von [mm]\rho[/mm] als Dichteoperator gewinnbringend in die
> Definition der partiellen Spur einsetzten soll, um die
> Aussage zu zeigen.
Schreibe [mm] $\rho [/mm] = [mm] \sum_{i=1}^n \rho_{1i} \otimes \rho_{2i}$ [/mm] mit [mm] $\rho_{1i} \in L(H_1)$, $\rho_{2i} \in L(H_2)$.
[/mm]
Dann ist $1 = [mm] tr(\rho) [/mm] = [mm] \sum_{i=1}^n tr(\rho_{1i} \otimes \rho_{2i}) [/mm] = [mm] \sum_{i=1}^n tr(\rho_{1i}) tr(\rho_{2i})$ [/mm] und [mm] $tr_2(\rho) [/mm] = [mm] \sum_{i=1}^n tr_2(\rho_{1i} \otimes \rho_{2i}) [/mm] = [mm] \sum_{i=1}^n \rho_{1i} tr(\rho_{2i})$. [/mm] Jetzt rechne mal [mm] $tr(\rho_1)$ [/mm] aus mit Hilfe der Linearitaet der Spur und vergleiche es mit der 1 von gerade.
Zur Semi-Definitheit kann ich allerdings nur raten:
Nimm dir [mm] $\psi_1 \in H_1$; [/mm] dann ist [mm] $\langle \rho_1 \psi_1, \psi_1 \rangle [/mm] = [mm] \sum_{i=1}^n tr(\rho_{2i}) \langle \rho_{1i} \psi_1, \psi_1 \rangle$. [/mm] Weiterhin ist ja $0 [mm] \le \langle \rho (\psi_1 \otimes \psi_2), \psi_1 \otimes \psi_2 \rangle [/mm] = [mm] \sum_{i=1}^n \langle \rho_{1i} \psi_1, \psi_1 \rangle \langle \rho_{2i} \psi_2, \psi_2 \rangle$. [/mm] Wenn man [mm] $\psi_2 \in H_2$ [/mm] jetzt so waehlen koennte, dass [mm] $\langle \rho_{2i} \psi_2, \psi_2 \rangle [/mm] = [mm] tr(\rho_{2i})$ [/mm] waer (unabhaengig von $i$), dann waer's einfach Vielleicht geht das mit passender Wahl der [mm] $\rho_{2i}$? [/mm] Diese kannst du ja als linear unabhaengig waehlen; ob das hilft, ist allerdings noch eine ganz andere Frage...
LG Felix
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 20:39 Di 28.12.2010 | Autor: | wee |
Vielen Dank für deine Antwort Felix!
Ist dann also in i)
[mm] \langle\rho_1\otimes\rho_2\sum_{i=1}^n\psi_{1,i}\otimes\psi_{2,i},\sum_{i=1}^n\psi_{1,i}\otimes\psi_{2,i}\rangle=\sum_{i=1}^n\langle\rho_1\psi_{1,i},\psi_{1,i}\rangle\langle\rho_2\psi_{2,i},\psi_{2,i}\rangle\geq [/mm] 0 ?
Bei ii) ist mir in
[mm]1 = tr(\rho) = \sum_{i=1}^n tr(\rho_{1i} \otimes \rho_{2i}) = \sum_{i=1}^n tr(\rho_{1i}) \rho_1 = tr(\rho_{2i})[/mm]
die dritte und vierte Gleichheit nicht klar.
> und [mm]tr_2(\rho) = \sum_{i=1}^n tr_2(\rho_{1i} \otimes \rho_{2i}) = \sum_{i=1}^n \rho_{1i} tr(\rho_{2i})[/mm].
Hier ist mir die zweite Gleichheit auch nicht klar.
> Jetzt rechne mal [mm]tr(\rho_1)[/mm] aus mit Hilfe der Linearitaet
> der Spur und vergleiche es mit der 1 von gerade.
also tr ist ja die Spur auf [mm] L(H_1\otimes H_2), [/mm] aber [mm] \rho_1 [/mm] ist nur ein
Operator aus [mm] L(H_1). [/mm] Da kann ich mir garnicht vorstellen, wie [mm] \rho_1 [/mm] auf
ein Vektor [mm] \sum_{i=1}^n\psi_{1,i}\otimes\psi_{2,i} [/mm] wirkt?
Vielleicht kannst du mir meine Fragen noch beantworten und mir so die partielle Spur etwas näher bringen, die ist mir nämlich noch sehr, sehr schleierhaft ;).
Besten Dank, im Vorraus!
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:57 Di 28.12.2010 | Autor: | felixf |
Moin!
> Vielen Dank für deine Antwort Felix!
>
>
> Ist dann also in i)
>
> [mm]\langle\rho_1\otimes\rho_2\sum_{i=1}^n\psi_{1,i}\otimes\psi_{2,i},\sum_{i=1}^n\psi_{1,i}\otimes\psi_{2,i}\rangle=\sum_{i=1}^n\langle\rho_1\psi_{1,i},\psi_{1,i}\rangle\langle\rho_2\psi_{2,i},\psi_{2,i}\rangle\geq[/mm]
> 0 ?
Hier hast du die Bilinearitaet vergessen! Aus [mm] $\langle\rho_1\otimes\rho_2\sum_{i=1}^n\psi_{1,i}\otimes\psi_{2,i},\sum_{j=1}^n\psi_{1,j}\otimes\psi_{2,j}\rangle$ [/mm] wird erstmal [mm] $\sum_{i=1}^n \sum_{j=1}^n \langle \rho_1 \psi_{1,i}, \psi_{1,j} \rangle \langle \rho_2 \psi_{2,i}, \psi_{2,j} \rangle$. [/mm] Bei den Summanden mit $i = j$ siehst du sofort, dass es [mm] $\ge [/mm] 0$ ist. Problem sind die Summanden mit $i [mm] \neq [/mm] j$. Es reicht uebrigens, den Fall $n = 2$ anzuschauen; wenn du den hast, solltest du es schnell verallgemeinern koennen.
In den Fall musst du wohl noch etwas mehr Arbeit stecken.
> Bei ii) ist mir in
>
> [mm]1 = tr(\rho) = \sum_{i=1}^n tr(\rho_{1i} \otimes \rho_{2i}) = \sum_{i=1}^n tr(\rho_{1i}) \rho_1 = tr(\rho_{2i})[/mm]
>
> die dritte und vierte Gleichheit nicht klar.
Das ist auch Quark Da hab ich mich kreaftig vertippt, es sollte $1 = [mm] tr(\rho) [/mm] = [mm] \sum_{i=1}^n tr(\rho_{1i} \otimes \rho_{2i}) [/mm] = [mm] \sum_{i=1}^n tr(\rho_{1i}) tr(\rho_{2i})$ [/mm] heissen.
Ich hoffe, das macht mehr Sinn
> > und [mm]tr_2(\rho) = \sum_{i=1}^n tr_2(\rho_{1i} \otimes \rho_{2i}) = \sum_{i=1}^n \rho_{1i} tr(\rho_{2i})[/mm].
>
> Hier ist mir die zweite Gleichheit auch nicht klar.
>
> > Jetzt rechne mal [mm]tr(\rho_1)[/mm] aus mit Hilfe der Linearitaet
> > der Spur und vergleiche es mit der 1 von gerade.
>
> also tr ist ja die Spur auf [mm]L(H_1\otimes H_2),[/mm] aber [mm]\rho_1[/mm]
> ist nur ein
> Operator aus [mm]L(H_1).[/mm] Da kann ich mir garnicht vorstellen,
> wie [mm]\rho_1[/mm] auf
> ein Vektor [mm]\sum_{i=1}^n\psi_{1,i}\otimes\psi_{2,i}[/mm]
> wirkt?
Ich hoffe das macht jetzt mehr Sinn, ohne meinen Riesen-Tippfehler (Ich werd das auch gleich in der Antwort korrigieren...)
LG Felix
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:22 Mi 29.12.2010 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|