www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Folgen und Grenzwerte" - Poissonapprox. d. Binomalvert.
Poissonapprox. d. Binomalvert. < Folgen+Grenzwerte < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Poissonapprox. d. Binomalvert.: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 18:40 Mo 26.11.2012
Autor: Bodo0686

Aufgabe
Beweisen Sie die Poissonapproximation der Binomialverteilung.

Hallo,
ich habe folgendes: Ich habe zudem noch Probleme wie man auf die einzelnen Schritte kommt. Könnt ihr helfen?

z.Z. [mm] \limes_{n\rightarrow\\IN} B_{n,p(n)}\{k\}=P_\lambda(\{k\}) [/mm]

p(n) [mm] \in [/mm] (0,1) [mm] \limes_{n\rightarrow\\IN} [/mm] n [mm] \cdot [/mm] p(n) = [mm] \lambda, [/mm] >0
[mm] n!=\begin{cases} 1, & \mbox{für } n \mbox{ =0} \\ n(n-1)!, & \mbox{für } n \mbox{ n>0} \end{cases} [/mm]

[mm] n^k [/mm] = k! (stimmt das?)


[mm] B_{n,p(n)}\{k\}=\vektor{n \\ k} \cdot p^k \cdot (1-p)^{n-k} [/mm]
= [mm] \frac{n!}{k!(n-k)!} \cdot (\frac{\lambda}{n})^k \cdot (1-\frac{\lambda}{n})^{{n-k}} =\frac{(n-1)\cdot (n-2) \cdot (n-3) \cdots (n-k+1)}{k!} \cdot (\frac{\lambda}{n})^k \cdot (1-\frac{\lambda}{n})^{{n-k}} [/mm]

1. Wie komme ich denn hier von [mm] \frac{n!}{k!(n-k)!} [/mm] auf [mm] \frac{(n-1)\cdot (n-2) \cdot (n-3) \cdots (n-k+1)}{k!} [/mm]

weiter:

[mm] =(1-\frac{1}{n}) \cdot (1-\frac{2}{n}) \cdots (1-\frac{k-1}{n}) \cdot (\frac{\lambda}{n})^k \cdot (1-\frac{\lambda}{n})^{{n-k}} [/mm]

2. Wie komme ich hier von [mm] \frac{(n-1)\cdot (n-2) \cdot (n-3) \cdots (n-k+1)}{k!} [/mm] auf [mm] (1-\frac{1}{n}) \cdot (1-\frac{2}{n}) \cdots (1-\frac{k-1}{n}) [/mm]

= [mm] \limes_{n\rightarrow\IN} (1-\frac{1}{n}) \cdot (1-\frac{2}{n}) \cdots (1-\frac{k-1}{n}) \cdot (\frac{\lambda}{n})^k \cdot (1-\frac{\lambda}{n})^{{n-k}} [/mm]
= 1 [mm] \cdot \frac{\lambda^k}{k!} \cdot e^{-\lambda} [/mm]
= [mm] P_\lambda(\{k\}) [/mm]

Danke und Grüße

        
Bezug
Poissonapprox. d. Binomalvert.: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:20 Mi 28.11.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Grenzwerte"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.mathebank.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]