Polynom ist irreduzibel? < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Untersuche das Polynom auf Irreduzibilität:
[mm] $x^n [/mm] + [mm] y^n [/mm] -1 [mm] \in \mathbb{Z}[x,y]$ [/mm] |
Ich habe bis jetzt nur Polynom mit einer Variable gehabt und ich weiss nicht genau wie ich hier vorgehen muss.
Ich habe mal gelesen dass man so ein Polynom auch wieder als Polynom mit einer Variable umformen kann, also dass ich ein Polynom einer Variable als koeffizient auffasse. Aber ich glaube nicht das mit das hier weiter hilft.
Dass das Polynom eine Nullstelle bei z.B. $(0,1)$ hat reicht auch nicht als Begründung dafür dass es reduzibel ist oder?
LG
|
|
|
|
Ja, genau, es gilt [mm] $\IZ[x,y]\cong\IZ[y][x]$, [/mm] und die Übersetzung von [mm] $x^n+y^n-1$ [/mm] lautet [mm] $x^n+f$, [/mm] wobei [mm] $f\in\IZ[y]$ [/mm] gegeben ist durch [mm] $f=y^n-1$. [/mm] Man schreibt einfach immer noch [mm] $x^n+y^n-1$ [/mm] und sagt, man wolle das als Polynom in der Variablen $x$ interpretieren. Zunächst überprüft man jetzt, dass es kein [mm] $z\in\IZ$ [/mm] gibt, welches das Polynom teilt. Jeder nichttriviale Teiler würde also ein $x$ oder ein $y$ enthalten und damit eine Zerlegun in [mm] $\IQ[x,y]$ [/mm] bringen. Es genügt also Irreduzibilität des Polynoms in [mm] $\IQ[x,y]$ [/mm] bzw. [mm] $\IQ[y][x]$ [/mm] nachzuweisen. [mm] $\IQ[y]$ [/mm] ist aber ein faktorieller Ring, sodass wir das Eisenstein-Kriterium anwenden können. Man sieht sofort einen Faktor von $f$, [mm] $f=(y-1)(y^{n-1}+\dots+1)$. [/mm] $y-1$ ist ein Primelement in [mm] $\IQ[x,y]$; [/mm] um Eisenstein anwenden zu können, muss man prüfen, dass [mm] $(y-1)^2$ [/mm] nicht $f$ teilt. Dazu genügt es aber einfach festzustellen, dass $1$ keine Nullstelle von [mm] $(y^{n-1}+\dots+1)$ [/mm] ist. Damit sind wir fertig.
Liebe Grüße,
UniversellesObjekt
|
|
|
|