www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Gruppe, Ring, Körper" - Primideal im Polynomring von Z
Primideal im Polynomring von Z < Gruppe, Ring, Körper < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Primideal im Polynomring von Z: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:48 Di 01.12.2009
Autor: kunzmaniac

Hallo,

ich versuche zu beweisen, dass $(p)$ für $p [mm] \in \IZ$ [/mm] prim in [mm] $\IZ[x]$ [/mm] ist.

$(p)$ sind ja einfach die Polynome, deren Koeffizienten von $p$ geteilt werden.
Ich habe versucht zu zeigen, dass für $g,h [mm] \notin \IZ[x]$ [/mm] gilt [mm] $\exists [/mm] i$ mit $p$ teilt nicht $g*h(i)$, wobei $g*h(i)$ der i-te Koeffizient des Produktes ist.
$g*h(i) = [mm] \summe_{j=0}^{i}g(j)*h(i-j)$ [/mm]
Ich weiß leider nur, dass g und h mindestens einen Koeffizienten haben, der nicht von p geteilt wird, wie finde ich jetzt mein i?
Man könnte ja sagen:
[mm] $\exists [/mm] k1, k2: p \ teilt \ nicht \ g(k1), p \ teilt \ nicht \ h(k2)$

$g*h(k1+k2) = [mm] \summe_{j=0}^{k1+k2}g(j)*h(k1+k2-j)$ [/mm]
für j = k1 hätte ich einen Summanden gefunden der nicht von p geteilt wird, aber das reicht ja leider nicht...
Bin für jede Hilfe dankbar!


        
Bezug
Primideal im Polynomring von Z: Antwort
Status: (Antwort) fertig Status 
Datum: 11:56 Mi 02.12.2009
Autor: felixf

Hallo!

> ich versuche zu beweisen, dass [mm](p)[/mm] für [mm]p \in \IZ[/mm] prim in
> [mm]\IZ[x][/mm] ist.
>  
> [mm](p)[/mm] sind ja einfach die Polynome, deren Koeffizienten von [mm]p[/mm]
> geteilt werden.

Genau.

>  Ich habe versucht zu zeigen, dass für [mm]g,h \notin \IZ[x][/mm]

Du meinst [mm] $\not\in [/mm] (p)$.

> gilt [mm]\exists i[/mm] mit [mm]p[/mm] teilt nicht [mm]g*h(i)[/mm], wobei [mm]g*h(i)[/mm] der
> i-te Koeffizient des Produktes ist.

Du solltest [mm] $j_1, j_2$ [/mm] minimal waehlen mit $p [mm] \nmid g(j_1)$, [/mm] $p [mm] \hmid h(j_2)$. [/mm] Dann waehle $i = [mm] j_1 [/mm] + [mm] j_2$. [/mm]

Alternativ: schau dir die Abbildung [mm] $\IZ[x] \to \IF_p[x]$, $\sum_{i=0}^n a_i x^i \mapsto \sum_{i=0}^n \pi(a_i) x^i$ [/mm] an, wenn [mm] $\pi [/mm] : [mm] \IZ \to \IF_p$ [/mm] die Restklassenabbildung ist. Was ist der Kern?

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gruppe, Ring, Körper"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.mathebank.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]