Problem mit Stetigkeit < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:11 Mi 20.09.2006 | Autor: | r3wDy |
Guden Daach :D
Ich zerbrech mir hier den Kopf an einer Aufgabe, und obwohl ich weiß das es nicht so schwer sein kann, finde ich den richtigen Ansatz nicht.
Folgendes:
Zeigen sie das [mm] \bruch{2(x-1)²}{x²-4x+3} [/mm] falls x<1 stetig ist.
Also dachte ich mir, stetig bedeutet: LGW=RGW=FW in X. Das es bei 1 0 im Zähler gibt oder so habe ich ja eh erwartet, aber mit welchem Trick schaffe ich es nun eben zu zeigen das es mit X=1 eben nicht 0 im Zähler ist?
Irgendwie umformen aber ich finde einfach nicht wie...
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:15 Mi 20.09.2006 | Autor: | Teufel |
Hallo!
Du könntest die Funktion vielleicht durch eine einfachere ersetzen, indem du Polynomdivision durchführst, oder Zähler und Nenner einzeln durch (x-1) teilst. Das müsste problemlos gehen, da 1 Nullstelle vom Zähler und vom Nenner ist.
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 17:04 Do 21.09.2006 | Autor: | r3wDy |
Mhn Ich hab das mal so gemacht aber weitergebracht hat mich das auch nicht...
1) Polynomdivision:
Wenn ich das Binom om Zähler auflöse, ausrechne und dann Polynomdivision mache, bekomme ich:
also: [mm] \bruch{2x²-4x+2}{x²-4x+3} [/mm] Das teile ich nun Oben und Unten durch (x-1) und bekomme [mm] \bruch{2x-2}{x-3} [/mm] Was bei x=1 im Zähler immernoch 0 ist. Also hab ich l hospital versucht, auf den ausgansbruch der ja schon Zähler und Nenner 0 ist bei x=1 und bekomme nach dem Ableiten [mm] \bruch{4x-4}{2x-4} [/mm] was bei x=1 im zähler immernoch 0 ist. Ich weiß aber das das stetig sein muss :/
Ich schreib hier mal die komplette Aufgabe rein, vlt fang ich ja nur falsch an:
Bestimmen Sie reelle Zahlen a und b so das die Funktion:
[mm] f(n)=\begin{cases} \bruch{2(x-1)²}{x²-4x+3}, & falls x < 1 \\ ax+b, & falls 1 \le x \le 2 \\ sin(\pi x), & falls x>2\end{cases}
[/mm]
auf ganz R stetig ist
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:55 Do 21.09.2006 | Autor: | dormant |
Hi!
Deine Funktion besteht aus drei stetigen Funktionen (alle drei sind Kompositionen stetiger Funktion auf dem jeweiligen Intervall). Bei der Aufgabe sollst du also die Funktion in den Übergangspunkte 1 und 2 auf Stetigkeit untersuchen. Das bedeutet, dass linke und rechte Grenze in 1 und in 2 übereinstimmen sollen.
Gruß,
dormant
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 23:16 Do 21.09.2006 | Autor: | r3wDy |
Naja dann hab ich das eh Falsch angegangen aber sowas hab ich mir auch schon überlegt.
Wäre dann ja die Gleichung a1+b = a2+b zu erfüllen, und das geht nur mit a=0 b= beliebig. Sehe ich das richtig?
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 23:34 Do 21.09.2006 | Autor: | leduart |
Hallo
Du sollst doch die Stetigkeit NUR für x<1 zeigen (so stehts in deiner Aufgabe. Aber da hat weder Zähler noch Nenner ne Nullstelle. also gilt der Satz über Zusammensetzung stetiger Funktionen.
Was deine Gleichung soll versteh ich nicht.
(Wenn übrigens nur im Zähler ne 0 steht ist die fkt. brav stetig! nur Nullen in Zähler und Nenner machen ne Lücke und 0 im Nenner allein einen Pol, also beides unstetig.) Aber das kommt ja eh für x<1 nicht vor!
Gruss leduart
|
|
|
|