Projektor, duale Abbildung < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 17:49 So 06.12.2015 | Autor: | sissile |
Aufgabe | Sei [mm] \pi: [/mm] V [mm] \rightarrow [/mm] W ein projektor, d.h. [mm] \pi \circ \pi [/mm] = [mm] \pi.
[/mm]
a) Zeige, dass dann auch die duale Abbildung [mm] \pi^t [/mm] : [mm] V^{\*}\rightarrow V^{\*} [/mm] eine Projektor ist, und beschreibe dessen Bild und Kern.
b) Seien nun [mm] W_1 [/mm] und [mm] W_2 [/mm] zwei komplementäre Teilräume von V, d.h. V= [mm] W_1 \oplus W_2. [/mm] Weiters bezeichne [mm] \pi_1: [/mm] V [mm] \rightarrow W_1 [/mm] die damit assozierte Projektion auf [mm] W_1 [/mm] längs [mm] W_2. [/mm] Nach Satz in der Vorlesung ist dann auch [mm] V^{\*}= W_1^{\circ} \oplus W_2^{\circ}. [/mm] Zeige dass [mm] \pi_1^t [/mm] mit der Projektion auf [mm] W_2^{\circ} [/mm] längs [mm] W_1^{\circ} [/mm] übereinstimmt. |
Hallo,
a)Es ist : [mm] \pi^t \circ \pi^t [/mm] = [mm] (\pi \circ \pi)^t [/mm] = [mm] \pi^t
[/mm]
Nun weiß ich nicht wie das Bild und der Kern genauer zu bestimmen sind:
[mm] \alpha \in ker(\pi^t) \iff \pi^t (\alpha)=0 \iff \alpha \circ \pi [/mm] =0 [mm] \iff \alpha (\pi(v))=0 \forall [/mm] v [mm] \in [/mm] V
[mm] \beta \in img(\pi^t) \iff \exists \gamma \in V^{\*}: \pi^t(\gamma)=\beta \iff \gamma \circ \pi [/mm] = [mm] \beta \iff \gamma(\pi(v))=\beta(v) \forall [/mm] v [mm] \in [/mm] V
b)
Sei [mm] \pi_1: [/mm] V [mm] \rightarrow W_1 [/mm] die assozierte Projektion auf [mm] W_1 [/mm] längs [mm] W_2
[/mm]
D.h. [mm] \pi_1|_{W_1} [/mm] = [mm] id_{W_1}, \pi_1|_{W_2}=0
[/mm]
ZZ.: [mm] \pi_1^t|_{W_1^{\circ}}= id_{W_1^{\circ}} [/mm] und [mm] \pi_1^t|_{W_2^{\circ}}= [/mm] 0
Sei [mm] \omega_2 \in W_2^{\circ}, [/mm] d.h. [mm] \omega_2(W_2)=0
[/mm]
[mm] \pi_1^t(\omega_2)=\omega_2 \circ \pi_1
[/mm]
Sei [mm] \omega_1 \in W_1^{\circ}, [/mm] d.h. [mm] \omega_1(W_1)=0
[/mm]
[mm] \pi_1^t(\omega_1)=\omega_1 \circ \pi_1
[/mm]
Ich könnte zeigen für [mm] w_1 \in W_1: \omega_1 \circ \pi(w_1)=\omega_1 (w_1)=0 \Rightarrow \pi_1^t|_{W_1^{\circ}} \in W_1^{\circ}
[/mm]
Aber den Beweis krieg ich nicht zusammen.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 08:15 Mo 07.12.2015 | Autor: | hippias |
> Sei [mm]\pi:[/mm] V [mm]\rightarrow[/mm] W ein projektor, d.h. [mm]\pi \circ \pi[/mm]
> = [mm]\pi.[/mm]
> a) Zeige, dass dann auch die duale Abbildung [mm]\pi^t[/mm] :
> [mm]V^{\*}\rightarrow V^{\*}[/mm] eine Projektor ist, und beschreibe
> dessen Bild und Kern.
>
> b) Seien nun [mm]W_1[/mm] und [mm]W_2[/mm] zwei komplementäre Teilräume von
> V, d.h. V= [mm]W_1 \oplus W_2.[/mm] Weiters bezeichne [mm]\pi_1:[/mm] V
> [mm]\rightarrow W_1[/mm] die damit assozierte Projektion auf [mm]W_1[/mm]
> längs [mm]W_2.[/mm] Nach Satz in der Vorlesung ist dann auch
> [mm]V^{\*}= W_1^{\circ} \oplus W_2^{\circ}.[/mm] Zeige dass [mm]\pi_1^t[/mm]
> mit der Projektion auf [mm]W_2^{\circ}[/mm] längs [mm]W_1^{\circ}[/mm]
> übereinstimmt.
> Hallo,
> a)Es ist : [mm]\pi^t \circ \pi^t[/mm] = [mm](\pi \circ \pi)^t[/mm] = [mm]\pi^t[/mm]
> Nun weiß ich nicht wie das Bild und der Kern genauer zu
> bestimmen sind:
> [mm]\alpha \in ker(\pi^t) \iff \pi^t (\alpha)=0 \iff \alpha \circ \pi[/mm]
> =0 [mm]\iff \alpha (\pi(v))=0 \forall[/mm] v [mm]\in[/mm] V
Also liegt [mm] $img(\pi)$ [/mm] im Kern eines jedes [mm] $\alpha\in ker(\pi^{t})$. [/mm] Vielleicht gilt auch die Umkehrung?
>
> [mm]\beta \in img(\pi^t) \iff \exists \gamma \in V^{\*}: \pi^t(\gamma)=\beta \iff \gamma \circ \pi[/mm]
> = [mm]\beta \iff \gamma(\pi(v))=\beta(v) \forall[/mm] v [mm]\in[/mm] V
>
Was folgt nun, wenn [mm] $v\in ker(\pi)$ [/mm] gewählt wird? Gilt auch die Umkehrung?
> b)
> Sei [mm]\pi_1:[/mm] V [mm]\rightarrow W_1[/mm] die assozierte Projektion auf
> [mm]W_1[/mm] längs [mm]W_2[/mm]
> D.h. [mm]\pi_1|_{W_1}[/mm] = [mm]id_{W_1}, \pi_1|_{W_2}=0[/mm]
> ZZ.:
> [mm]\pi_1^t|_{W_1^{\circ}}= id_{W_1^{\circ}}[/mm] und
> [mm]\pi_1^t|_{W_2^{\circ}}=[/mm] 0
>
> Sei [mm]\omega_2 \in W_2^{\circ},[/mm] d.h. [mm]\omega_2(W_2)=0[/mm]
> [mm]\pi_1^t(\omega_2)=\omega_2 \circ \pi_1[/mm]
> Sei [mm]\omega_1 \in W_1^{\circ},[/mm]
> d.h. [mm]\omega_1(W_1)=0[/mm]
> [mm]\pi_1^t(\omega_1)=\omega_1 \circ \pi_1[/mm]
>
Berechne nun [mm] $\pi_{1}^{t}(\omega_{1})$ [/mm] auf [mm] $W_{1}$ [/mm] und [mm] $W_{2}$. [/mm] Stimmt das Ergebnis mit [mm] $\omega_{1}$ [/mm] überein? Wenn ja, dann ist [mm] $\pi_{1}^{t}(\omega_{1})= \omega_{1}$.
[/mm]
> Ich könnte zeigen für [mm]w_1 \in W_1: \omega_1 \circ \pi(w_1)=\omega_1 (w_1)=0 \Rightarrow \pi_1^t|_{W_1^{\circ}} \in W_1^{\circ}[/mm]
>
> Aber den Beweis krieg ich nicht zusammen.
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 15:21 Fr 18.12.2015 | Autor: | sissile |
Hallo,
Ich hab die letzten Woche gearbeitet und keine Zeit für Mathematik gefunden. Entschuldige deshalb meine späte Antwort.
[mm] a)ker(\pi^t)=img(\pi)^{\circ} [/mm] und [mm] img(\phi^t)=ker(\phi)^{\circ} [/mm] sind schon bekannte allgemeine Aussagen für [mm] \pi [/mm] linear - die wir in der Vorlesung schon mal gezeigt haben.
Wenn [mm] \pi_1 [/mm] Projektor auf [mm] W_1 [/mm] längs [mm] W_2 [/mm] ist, ist
[mm] img(\pi_1^t)=ker(\pi_1)^{\circ}=W_2^{\circ}
[/mm]
[mm] ker(\pi_1^t)=img(\pi_1)^{\circ}=W_1^{\circ}
[/mm]
b)
Da hatte ich im ersten Post ein Durcheinander.
Sei [mm] \pi_1 [/mm] Projektor auf [mm] W_1 [/mm] längs [mm] W_2
[/mm]
ZZ.: [mm] \pi_1^t [/mm] Projektor auf [mm] W_2^{\circ} [/mm] längs [mm] W_1^{\circ}
[/mm]
gZZ.: [mm] \pi_1^t|_{W_1^{\circ}}=0, \pi_1^t|_{W_2^{\circ}}=id_{W_2^{\circ}}
[/mm]
1) [mm] \pi_1^t|_{W_1^{\circ}}=0
[/mm]
Sei w [mm] \in W_1^{\circ} [/mm] und v [mm] \in [/mm] V beliebig aber fix:
[mm] \pi_1^t \circ [/mm] w (v)= [mm] w(\pi_1(v))=\begin{cases} w(v)=0, & \mbox{für }v \in W_1 \\ w(0)=0, & \mbox{für } v\in W_2 \end{cases}
[/mm]
Entspricht also der Nullabbildung.
[mm] 2)\pi_1^t|_{W_2^{\circ}}=id_{W_2^{\circ}}
[/mm]
Sei w [mm] \in W_2^{\circ}, [/mm] v [mm] \in [/mm] V beliebig aber fix
[mm] \pi_1^t \circ [/mm] w(v)= w [mm] \circ \pi_1 (v)=\begin{cases} w(v), & \mbox{für }v \in W_1 \\ w(0)=0, & \mbox{für } v\in W_2 \end{cases}
[/mm]
und sei w [mm] \in W_2^{\circ} [/mm] v [mm] \in [/mm] V
[mm] id\circ [/mm] w (v)= [mm] \begin{cases} id(0)=0, & \mbox{für }v \in W_2 \\ w(v), & \mbox{für } v\in W_1 \end{cases}
[/mm]
also stimmen die Abbildungen überein.
Okay?
LG,
sissi
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 10:46 So 20.12.2015 | Autor: | hippias |
Mir scheint's als hättest Du das alles gut durchdacht.
|
|
|
|