Punktweise Konvergenz < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:06 Di 28.04.2009 | Autor: | Franzie |
Aufgabe | [mm] f_{2}(x)=x^{n}*sin(\bruch{1}{x^{2}}) [/mm] |
Hallo ihr Lieben!
Ich soll überprüfen, ob die obige Funktionenfolge im Intervall I=[0,1] punktweise konvergiert und die Grenzfunktion angeben und das Ganze dann nochmals auf gleichmäßige Konvergenz untersuchen.
Kann mir jemand einen Tipp geben, wie ich vorgehen muss, um das zu überprüfen? Kann mit der Epsilon-Definition nicht viel anfangen, da ich nicht weiß, wie ich diese hier anwenden muss und wie ich dann zur Grenzfunktion gelange.
Im Prinzip weiß ich auch, worin der Unterschied zwischen gleichmäßiger und punktweiser Konvergenz besteht, nämlich dass die punktweise Konvergenz von der Wahl des x abhängig ist. Aber wie setze ich das dann um?
Vielen Dank für eure Hilfe
|
|
|
|
Hallo!
Schauen wir uns doch die Definitionen der beiden Konvergenzarten genauer an:
punktweise Konvergenz Wir nennen eine Funktioinenfolge [mm] (f_{n}) [/mm] punktweise konvergent gegen eine Funktion $f$, wenn für jedes [mm] x\in [/mm] X die Folge [mm] (f_{n}(x)) [/mm] gegen f(x) konvergiert.
Hierzu ein kleines Beispiel:
Betrachte die Funktion [mm] f_{n}(x)=x^{n+1}. [/mm] Dann konvergiert [mm] (f_{n}) [/mm] punktweise gegen die Funktion [mm] f:[0,1]\to\IR [/mm] mit f(x)=0 für [mm] x\in[0,1) [/mm] und f(x)=1 für x=1.
Tipp: Ich habe dieses Beispiel nicht umsonst gewählt.
Du scheinst die Definiton gleichmäßiger Konvergenz zu kennen, anhand des Beispiels kannst du dir klar machen, weshalb diese nicht gleichmäßig gegen f konvergiert. Und anschließend kümmerst du dich um deine Funktion.
Grüße Elvis
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 06:25 Mi 29.04.2009 | Autor: | Franzie |
Okay, das Beispiel verstehe ich. Ich hatte bereits die Vermutung, dass meine Funktion auf dem Intervall punktweise gegen die Nullfunktion konvergiert. Allerdings müsste ich doch auch hier die 1 gesondert betrachten, oder nicht?
In meinem Beispiel konvergiert die Folge für x=1 dann praktisch gegen sin(1).
Aber nun weiß ich nicht, wie ich das mit der gleichmäßigen Konvergenz machen soll.
Kann ich einfach sagen, dass diese Funktion nicht gleichmäßig auf [0,1] konvergiert, weil ich bei der punktweisen Konvergenz im gleichen Intervall zwei verschiedene Grenzfunktionen habe?
|
|
|
|
|
> Okay, das Beispiel verstehe ich. Ich hatte bereits die
> Vermutung, dass meine Funktion auf dem Intervall punktweise
> gegen die Nullfunktion konvergiert. Allerdings müsste ich
> doch auch hier die 1 gesondert betrachten, oder nicht?
> In meinem Beispiel konvergiert die Folge für x=1 dann
> praktisch gegen sin(1).
Hallo,
Deine Grenzfunktion f ist also:
[mm] f(x):=\begin{cases} 0, & \mbox{für } x\in[0,1[ \mbox{} \\ 1sin(1), & \mbox{für } x=1 \mbox{ } \end{cases}.
[/mm]
Die Grenzfunktion ist offensichtlich nicht stetig,
Deine Funktionenfolge [mm] f_n [/mm] besteht hingegen aus stetigen Funktionen.
Beachte nun dies: wenn eine Folge stetiger Funktionen gleichmäßig konvergiert, dann ist die Grenzfunktion stetig. (Wichtiger Satz, auch für Klausuren.)
Die Konsequenz?
> Aber nun weiß ich nicht, wie ich das mit der gleichmäßigen
> Konvergenz machen soll.
> Kann ich einfach sagen, dass diese Funktion nicht
> gleichmäßig auf [0,1] konvergiert, weil ich bei der
> punktweisen Konvergenz im gleichen Intervall zwei
> verschiedene Grenzfunktionen habe?
Du hast nicht zwei verschiedene Grenzfunktionen - aber vielleicht meinst Du das Richtige...
Gruß v. Angela
|
|
|
|