Randwahrscheinlichkeitsdichte < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:28 So 01.05.2016 | Autor: | felsn |
Aufgabe 1 | Gegeben ist Rx [mm] \subset \IR [/mm] als ein Dreieck mit den Eckpunkten (0,0),(2,0) und (0,2) außerdem ist X =(X1,X2) ein Zufallsvektor in [mm] \IR².
[/mm]
Die gemeinsame Verteilungsdichte ist gegeben durch:
[mm] fx(X1,X2)=\begin{cases} k*exp(-x1), & \mbox{für } X1,X2 \mbox{ aus Rx} \\ 0, & \mbox{sonst} \end{cases}
[/mm]
1. Berechne k |
Aufgabe 2 | Berechnen Sie die Randwahrscheinlichkeitsdichten von X1 und X2. |
Moin zusammen.
Also für k habe ich folgendes getan:
[mm] \integral_{0}^{2}{\integral_{0}^{2-x}{k*exp(-x1) dx2 dx1}}=1.
[/mm]
und erhalte dann für k: [mm] \bruch{1}{exp(-2)+1}
[/mm]
Und bei Aufgabe 2.
fx1(x1) = [mm] \integral_{0}^{2-x}{k exp(-x1) dx2} [/mm] ergibt [mm] \bruch{2*exp(-x1)-x1*exp(-x1)}{exp(-2)+1} [/mm]
fx2(x2) = [mm] \integral_{0}^{2}{k*exp(-x1) dx1} [/mm] ergibt eine Konstante, was keinen Sinn macht.
Ich wäre für eure Hilfe sehr dankbar.
Felix
PS: Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 07:32 Mo 02.05.2016 | Autor: | luis52 |
> Moin zusammen.
> Also für k habe ich folgendes getan:
> [mm]\integral_{0}^{2}{\integral_{0}^{2-x}{k*exp(-x1) dx2 dx1}}=1.[/mm]
>
> und erhalte dann für k: [mm]\bruch{1}{exp(-2)+1}[/mm]
>
> Und bei Aufgabe 2.
> fx1(x1) = [mm]\integral_{0}^{2-x}{k exp(-x1) dx2}[/mm] ergibt
> [mm]\bruch{2*exp(-x1)-x1*exp(-x1)}{exp(-2)+1}[/mm]
> fx2(x2) = [mm]\integral_{0}^{2}{k*exp(-x1) dx1}[/mm] ergibt eine
> Konstante, was keinen Sinn macht.
Es koennte sein, dass deine Schwierigkeiten daher ruehren, dass du etwas nachlaessig mit den Integrationsgrenzen umgehst. Vielfach ist es hilfreich so vorzugehen: Fuer eine Menge $M_$ sei die charakteristischen Funktion [mm] $\chi_M$ [/mm] gegeben durch [mm] $\chi_M(x)=1$ [/mm] und [mm] $\chi_M(x)=0$ [/mm] fuer [mm] $x\notin [/mm] M$.
Dann ist [mm] $f(x_1,x_2)=k\exp(-x_1)\,\chi_{(0,2)}(x_1)\,\chi_{(0,2-x_1)}(x_2)$ [/mm] und
[mm] $f_{x_2}(x_2)=k\int_{-\infty}^{+\infty}\exp(-x_1)\,\chi_{(0,2)}(x_1)\,\chi_{(0,2-x_1)}(x_2)\,dx_1$
[/mm]
fuer [mm] $0
|
|
|
|