Reduzibel über F_p < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:57 Do 28.01.2016 | Autor: | Herbart |
Hallo,
ich habe eine Frage zu Polynome in [mm] $\IQ [/mm] [X]$. Angenommen wir haben ein normiertes Polynom $ [mm] f\in\IQ [/mm] [X] $ mit $ deg (f)=4$ und Koeffizienten in [mm] $\IZ [/mm] $. Wir möchten zeigen: $ f $ ist irreduzibel.
Normalerweise würde ich nun $ f $ in [mm] $\mathbb {F}_p[X] [/mm] $ betrachten und zeigen, dass es irreduzibel ist. Für $ p=2$ etwa gibt es nicht so viele Möglichkeiten. Das Eisenstein-Kriterium stellt ebenfalls ein gutes Werkzeug in manchen Fällen dar.
Es soll jedoch noch eine weitere Möglichkeit geben: dazu zerlegt man das Polynom $ f $ in [mm] $\mathbb {F}_p [/mm] [X]$ in irreduzible normierte Faktoren. Offenbar ist $ f $ in [mm] $\mathbb {F}_p[X] [/mm] $ reduzibel. Wie kann ich dann aber die Irreduziblität in [mm] $\IQ[X] [/mm] $ zeigen?
Ich habe mir schon überlegt, dass die Koeffizienten $ [mm] c_i [/mm] $ der irreduziblen normierten Faktoren in [mm] $\IQ[X] [/mm] $ von der Form $ [mm] c_i+p\cdot z_i [/mm] $ mit $ [mm] z_i\in\IZ [/mm] $ sein müssen. Wenn ich dann kein geeignetes [mm] $z_i\in\IZ [/mm] $ finde, s.d. die Zerlegung auch in [mm] $\IQ [/mm] [X]$ hält, sollte $ f $ über [mm] $\IQ [/mm] [X] $ irreduzibel sein. Nicht wahr?
Ich hoffe es ist klar, was ich meine. Vielleicht ist mein Ansatz aber auch falsch.
Viele Grüße
Herbart
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 23:00 Do 28.01.2016 | Autor: | felixf |
Moin!
> ich habe eine Frage zu Polynome in [mm]\IQ [X][/mm]. Angenommen wir
> haben ein normiertes Polynom [mm]f\in\IQ [X][/mm] mit [mm]deg (f)=4[/mm] und
> Koeffizienten in [mm]\IZ [/mm]. Wir möchten zeigen: [mm]f[/mm] ist
> irreduzibel.
> Normalerweise würde ich nun [mm]f[/mm] in [mm]\mathbb {F}_p[X][/mm]
> betrachten und zeigen, dass es irreduzibel ist. Für [mm]p=2[/mm]
> etwa gibt es nicht so viele Möglichkeiten. Das
> Eisenstein-Kriterium stellt ebenfalls ein gutes Werkzeug in
> manchen Fällen dar.
> Es soll jedoch noch eine weitere Möglichkeit geben: dazu
> zerlegt man das Polynom [mm]f[/mm] in [mm]\mathbb {F}_p [X][/mm] in
> irreduzible normierte Faktoren. Offenbar ist [mm]f[/mm] in [mm]\mathbb {F}_p[X][/mm]
> reduzibel. Wie kann ich dann aber die Irreduziblität in
> [mm]\IQ[X][/mm] zeigen?
> Ich habe mir schon überlegt, dass die Koeffizienten [mm]c_i[/mm]
> der irreduziblen normierten Faktoren in [mm]\IQ[X][/mm] von der Form
> [mm]c_i+p\cdot z_i[/mm] mit [mm]z_i\in\IZ[/mm] sein müssen. Wenn ich dann
> kein geeignetes [mm]z_i\in\IZ[/mm] finde, s.d. die Zerlegung auch in
> [mm]\IQ [X][/mm] hält, sollte [mm]f[/mm] über [mm]\IQ [X][/mm] irreduzibel sein.
> Nicht wahr?
Jein :)
Das hängt davon ab, wie das Polynom zerfällt. Du kannst z.B. über [mm] $\IF_p$ [/mm] einen Linearfaktor haben (also ein Produkt von Polynomen von Grad 1 und Grad 3), aber über [mm] $\IQ$ [/mm] gibt es nur eine Zerlegung als Produkt von zwei irreduziblen Faktoren. (In dem Fall hat das Polynom 3. Grades über [mm] $\IF_p$ [/mm] ebenfalls noch einen Linearfaktor.)
Wenn du nun weisst, dass das Polynom in [mm] $\IQ$ [/mm] keine Nullstellen hat und es über [mm] $\IF_p$ [/mm] das Produkt zweier irreduzibler Faktoren ist, dann muss es so sein wie du schreibst.
Allgemein: ist $f$ normiert von Grad $n$ mit Koeffizienten in [mm] $\IZ$ [/mm] und sind $a, b$ mit $a + b = n$ und $a, b [mm] \ge [/mm] 1$, und hat $f$ über [mm] $\IQ$ [/mm] eine Zerlegung als Produkt von Polynomen von Grad $a$ und Grad $b$, so auch über [mm] $\IF_p$, [/mm] und diese erhält man durchs modulo $p$ nehmen der Zerlegung über [mm] $\IQ$ [/mm] (nach Gauss haben die Koeffizienten ganzzahlige Faktoren, wenn man sie normiert voraussetzt). Wenn du das Polynom über [mm] $\IF_p$ [/mm] also als Produkt zweier irreduziblen Faktoren schreiben kannst, so ist das Polynom über [mm] $\IQ$ [/mm] entweder ebenfalls das Produkt zweier irreduzibler Faktoren (die modulo $p$ genau denen über [mm] $\IF_p$ [/mm] entsprechen), oder es ist über [mm] $\IQ$ [/mm] irreduzibel.
LG Felix
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 08:08 Fr 29.01.2016 | Autor: | Herbart |
> Allgemein: ist [mm]f[/mm] normiert von Grad [mm]n[/mm] mit Koeffizienten in
> [mm]\IZ[/mm] und sind [mm]a, b[/mm] mit [mm]a + b = n[/mm] und [mm]a, b \ge 1[/mm], und hat [mm]f[/mm]
> über [mm]\IQ[/mm] eine Zerlegung als Produkt von Polynomen von Grad
> [mm]a[/mm] und Grad [mm]b[/mm], so auch über [mm]\IF_p[/mm], und diese erhält man
> durchs modulo [mm]p[/mm] nehmen der Zerlegung über [mm]\IQ[/mm] (nach Gauss
> haben die Koeffizienten ganzzahlige Faktoren, wenn man sie
> normiert voraussetzt). Wenn du das Polynom über [mm]\IF_p[/mm] also
> als Produkt zweier irreduziblen Faktoren schreiben kannst,
> so ist das Polynom über [mm]\IQ[/mm] entweder ebenfalls das Produkt
> zweier irreduzibler Faktoren (die modulo [mm]p[/mm] genau denen
> über [mm]\IF_p[/mm] entsprechen), oder es ist über [mm]\IQ[/mm]
> irreduzibel.
Vielen Dank für deine sehr gute Antwort!
Zu dem letzten Teil
> Wenn du das Polynom über [mm]\IF_p[/mm] also
> als Produkt zweier irreduziblen Faktoren schreiben kannst,
> so ist das Polynom über [mm]\IQ[/mm] entweder ebenfalls das Produkt
> zweier irreduzibler Faktoren (die modulo [mm]p[/mm] genau denen
> über [mm]\IF_p[/mm] entsprechen), oder es ist über [mm]\IQ[/mm]
> irreduzibel.
noch eine Frage. Im Prinzip ist es doch dann so, wie ich es vermutet habe. Kann ich zeigen, dass man $f$ nicht als Produkt der zwei irreduziblen Faktoren (aus der Betrachtung über [mm] $\mathbb{F}_p$) [/mm] mit Koeffizienten [mm] $c_i +5z_i$ [/mm] (wie oben) schreiben kann, d.h. es gibt keine solchen [mm] $z_i$, [/mm] dann muss $f$ irreduzibel sein. Soweit richtig?
Viele Grüße
Herbart
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 11:40 So 31.01.2016 | Autor: | felixf |
Moin!
> Zu dem letzten Teil
> > Wenn du das Polynom über [mm]\IF_p[/mm] also
> > als Produkt zweier irreduziblen Faktoren schreiben kannst,
> > so ist das Polynom über [mm]\IQ[/mm] entweder ebenfalls das Produkt
> > zweier irreduzibler Faktoren (die modulo [mm]p[/mm] genau denen
> > über [mm]\IF_p[/mm] entsprechen), oder es ist über [mm]\IQ[/mm]
> > irreduzibel.
> noch eine Frage. Im Prinzip ist es doch dann so, wie ich
> es vermutet habe. Kann ich zeigen, dass man [mm]f[/mm] nicht als
> Produkt der zwei irreduziblen Faktoren (aus der Betrachtung
> über [mm]\mathbb{F}_p[/mm]) mit Koeffizienten [mm]c_i +5z_i[/mm] (wie oben)
Du meinst wohl [mm] $c_i [/mm] + 5 [mm] z_i$, [/mm] oder [mm] $\IF_5$ [/mm]
> schreiben kann, d.h. es gibt keine solchen [mm]z_i[/mm], dann muss [mm]f[/mm]
> irreduzibel sein. Soweit richtig?
Ja. Denn wenn $f$ das Produkt eines irreduziblen Polynoms von Grad 3 mit einem Linearfaktor wäre, dann müsste einer der Faktoren von Grad 2 über [mm] $\IF_p$ [/mm] in zwei Linearfaktoren zerfallen, was aber nicht geht wenn die Faktoren irreduzibel sind.
LG Felix
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 20:06 So 31.01.2016 | Autor: | Herbart |
Vielen Dank für deine wirklich hilfreichen Antworten!
Viele Grüße
Herbart
|
|
|
|