Relativen Fehler bestimmen < Numerik < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Seien $x,y [mm] \in \mathbb{R} \backslash\{0\}$ [/mm] und $rd(x), rd(y)$ die zugehörigen Maschienenzahlen.
Zeigen Sie, dass [mm] $\frac{\frac{x}{y} - \frac{rd(x)}{rd(y)} }{\frac{x}{y}} \approx e_{rel}(x) [/mm] - [mm] e_{rel}(y)$ [/mm] gilt. Hierbei bezeichnet [mm] $e_{rel}$ [/mm] den relativen Fehler.
(Tipp: Taylorentwicklung!) |
Hallo zusammen,
die oben genannte Aufgabe bereitet mir Schwierigkeiten. Ich habe bereits durch Umformungen (u.a. "nahrhafte Nullen") das ganze gelöst. Zumindest glaube ich das.
Es ergibt sich damit [mm] $\frac{\frac{x}{y} - \frac{rd(x)}{rd(y)} }{\frac{x}{y}} [/mm] = ... [mm] \leq (e_{rel}(x) [/mm] - [mm] e_{rel}(y))\cdot |\frac{y}{rd(y)}| \approx e_{rel}(x) [/mm] - [mm] e_{rel}(y)$, [/mm] da [mm] $|\frac{y}{rd(y)}| \approx [/mm] 1$.
(die ganze Umformung kann ich natürlich nachliefern, wenn gewünscht)
Allerdings würde ich die Aufgabe lieber mit der vorgeschlagenen Taylorentwicklung lösen, da ich glaube dass ich damit auf lange Sicht mehr Erfolg haben werde. Leider habe ich so gar keine Ahnung wie ich dort vorgehen muss..
Ich verstehe nicht wie der Ansatz auszusehen hat und was ich als Funktion und Entwicklungspunkt nehmen muss/sollte. Ich möchte das Prinzip dahinter ernsthaft verstehen und hoffe dass ihr so freundlich seid mir dabei zu helfen :)
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Hallo KnowledgeUnderflow,
> Seien [mm]x,y \in \mathbb{R} \backslash\{0\}[/mm] und [mm]rd(x), rd(y)[/mm]
> die zugehörigen Maschienenzahlen.
> Zeigen Sie, dass [mm]\frac{\frac{x}{y} - \frac{rd(x)}{rd(y)} }{\frac{x}{y}} \approx e_{rel}(x) - e_{rel}(y)[/mm]
> gilt. Hierbei bezeichnet [mm]e_{rel}[/mm] den relativen Fehler.
>
> (Tipp: Taylorentwicklung!)
> Hallo zusammen,
>
> die oben genannte Aufgabe bereitet mir Schwierigkeiten. Ich
> habe bereits durch Umformungen (u.a. "nahrhafte Nullen")
> das ganze gelöst. Zumindest glaube ich das.
>
> Es ergibt sich damit [mm]\frac{\frac{x}{y} - \frac{rd(x)}{rd(y)} }{\frac{x}{y}} = ... \leq (e_{rel}(x) - e_{rel}(y))\cdot |\frac{y}{rd(y)}| \approx e_{rel}(x) - e_{rel}(y)[/mm],
> da [mm]|\frac{y}{rd(y)}| \approx 1[/mm].
> (die ganze Umformung kann
> ich natürlich nachliefern, wenn gewünscht)
>
Dann lass mal sehen.
> Allerdings würde ich die Aufgabe lieber mit der
> vorgeschlagenen Taylorentwicklung lösen, da ich glaube
> dass ich damit auf lange Sicht mehr Erfolg haben werde.
> Leider habe ich so gar keine Ahnung wie ich dort vorgehen
> muss..
>
> Ich verstehe nicht wie der Ansatz auszusehen hat und was
> ich als Funktion und Entwicklungspunkt nehmen muss/sollte.
> Ich möchte das Prinzip dahinter ernsthaft verstehen und
> hoffe dass ihr so freundlich seid mir dabei zu helfen :)
>
Entwickle die Funktion [mm]f\left(x,y\right)=\bruch{x}{y}[/mm]
um den Punkt [mm]\left( \ rd\left(x\right), \ rd\left(y\right) \ \right)[/mm].
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.
Gruss
MathePower
|
|
|
|