www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentialgleichungen" - Rückwärts in der Zeit
Rückwärts in der Zeit < DGL < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Rückwärts in der Zeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:33 Di 21.04.2009
Autor: Zerwas

Aufgabe
Häufig können moderne Integratoren nur vorwärts in der Zeit integrieren, d.h. sie verlangen eine Endzeit [mm] t_f, [/mm] die größer ist, als die Anfangszeit [mm] t_0. [/mm] Gegeben sei nun das Anfangswertproblem
[mm] \dot{y}(t) [/mm] = f(t, y(t)),   [mm] y(t_0) [/mm] = [mm] y_0, [/mm]
wobei der Wert [mm] y(t_f) [/mm] für [mm] t_f [/mm] < [mm] t_0 [/mm] gesucht wird. Formuliere das Problem adäquat um.

Ich habe mir Überlegt, dass es ja reichen sollte aus t einfach -t zu machen und dann zu haben:
[mm] \dot{y}(-t) [/mm] = f(t, y(-t)),   [mm] y(-t_0) [/mm] = [mm] y_0, [/mm]
damit kann ich dann einfach rückwärts integrieren.

Funktioniert das so? oder ist das zu simpel und ich habe einen Harken übersehen?

Ich habe diese Frage auf keinem anderen Forum auf einer anderen Internetseite gestellt.

Gruß und Danke
Zerwas

        
Bezug
Rückwärts in der Zeit: Antwort
Status: (Antwort) fertig Status 
Datum: 18:31 Di 21.04.2009
Autor: MathePower

Hallo Zerwas,

> Häufig können moderne Integratoren nur vorwärts in der Zeit
> integrieren, d.h. sie verlangen eine Endzeit [mm]t_f,[/mm] die
> größer ist, als die Anfangszeit [mm]t_0.[/mm] Gegeben sei nun das
> Anfangswertproblem
>  [mm]\dot{y}(t)[/mm] = f(t, y(t)),   [mm]y(t_0)[/mm] = [mm]y_0,[/mm]
>  wobei der Wert [mm]y(t_f)[/mm] für [mm]t_f[/mm] < [mm]t_0[/mm] gesucht wird.
> Formuliere das Problem adäquat um.
>  Ich habe mir Überlegt, dass es ja reichen sollte aus t
> einfach -t zu machen und dann zu haben:
>  [mm]\dot{y}(-t)[/mm] = f(t, y(-t)),   [mm]y(-t_0)[/mm] = [mm]y_0,[/mm]
>  damit kann ich dann einfach rückwärts integrieren.
>  
> Funktioniert das so? oder ist das zu simpel und ich habe
> einen Harken übersehen?


Du mußt hier schon alle Variablen transformieren, auch [mm]y'\left(t\right)[/mm].


>  
> Ich habe diese Frage auf keinem anderen Forum auf einer
> anderen Internetseite gestellt.
>  
> Gruß und Danke
>  Zerwas


Gruß
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.mathebank.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]