www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Diskrete Mathematik" - Schubfachprinzip
Schubfachprinzip < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Schubfachprinzip: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:25 Sa 27.03.2010
Autor: itse

Aufgabe
Eine natürliche Zahl n mit 1 [mm] \le [/mm] n < 10.000 ist gegeben und es ist bekannt, dass weder 2 noch 5 Teiler von n sind. Beweisen Sie mit Hilfe des Schubfachprinzips, dass es Vielfache von n gibt, die nur aus der Ziffer 1 bestehen. Wie viele Ziffern hat die kleinste dieser Vielfachen?  

Hallo,

ich habe also folgende Objekte 1,2,3,4, ...., 9.999, insgesamt 10.000 Zahlen. Die Zahlen 2 und 5 sind keine Teiler von n. Somit schränken sich die Objekte noch weiter ein: 1,3,7,9,11,13 .....

Wie viele Zahlen / Objekte bleiben dann noch übrig?

Es fehlen somit alle geraden Zahlen, es kann nur ungerade n geben, zudem darf n nicht durch 5 teilbar sein ohne Rest.

Nun soll man mit dem Schubfachprinzip zeigen, das es Vielfache von n gibt, die nur aus der Ziffer 1 bestehen.

Man muss somit Kategorien einführen, damit die Zahlen darin abgelegt werden können.

Ich verstehe nur nicht, wie man ds mit dem Schubfachprinzip zeigt. Das Schubfachprinzip sagt doch nur aus: Falls man n Objekte auf m Mengen (n,m  > 0) verteilt, und n größer als m ist, dann gibt es mindestens eine Menge, in der mehr als ein Objekt landet.


Beispielsweise kann ich doch direkt für die 1 zeigen, das es Vielfache gibt, die nur aus der Ziffer 1 bestehen: 1,11,111,1111, ....

Wie viele Ziffern hat die kleinste dieser Vielfachen? Antwort: 1

Habe ich etwas falsch verstanden oder übersehen? Wie wäre denn ein Ansatz um es zu zeigen?


Vielen Dank
itse

        
Bezug
Schubfachprinzip: Antwort
Status: (Antwort) fertig Status 
Datum: 14:14 So 28.03.2010
Autor: SEcki


> Beispielsweise kann ich doch direkt für die 1 zeigen, das
> es Vielfache gibt, die nur aus der Ziffer 1 bestehen:
> 1,11,111,1111, ....
>  
> Wie viele Ziffern hat die kleinste dieser Vielfachen?
> Antwort: 1

Hier wäre dann [m]n=1[/m]. Du sollst aber zeigen, dass für beliebiges n mit obiger Eigenscahft ein Vielfaches gibt, dass  nur aus 1en besteht. Einen Ansatz dazu habe ich leider nicht - jedenfalls darfst du auch mit keiner Zahl multiplizieren, die durch 2 oder 5 teilbar ist (vielleicht kann man dann abschätzen wieviel Zahlen herauskommen, und wenn man noch die mit nur 1ern abzieht, dies zu wenig wären? Aber das gnge dann schon Richtung unendlich)

SEcki

Bezug
        
Bezug
Schubfachprinzip: Antwort
Status: (Antwort) fertig Status 
Datum: 15:02 So 28.03.2010
Autor: abakus


> Eine natürliche Zahl n mit 1 [mm]\le[/mm] n < 10.000 ist gegeben
> und es ist bekannt, dass weder 2 noch 5 Teiler von n sind.
> Beweisen Sie mit Hilfe des Schubfachprinzips, dass es
> Vielfache von n gibt, die nur aus der Ziffer 1 bestehen.
> Wie viele Ziffern hat die kleinste dieser Vielfachen?
> Hallo,
>  
> ich habe also folgende Objekte 1,2,3,4, ...., 9.999,
> insgesamt 10.000 Zahlen. Die Zahlen 2 und 5 sind keine
> Teiler von n. Somit schränken sich die Objekte noch weiter
> ein: 1,3,7,9,11,13 .....
>  
> Wie viele Zahlen / Objekte bleiben dann noch übrig?
>  
> Es fehlen somit alle geraden Zahlen, es kann nur ungerade n
> geben, zudem darf n nicht durch 5 teilbar sein ohne Rest.
>  
> Nun soll man mit dem Schubfachprinzip zeigen, das es
> Vielfache von n gibt, die nur aus der Ziffer 1 bestehen.
>
> Man muss somit Kategorien einführen, damit die Zahlen
> darin abgelegt werden können.
>  

Hallo,
da teilerfremd zu 2 und 5 ist, ist n auch teilerfremd zu jeder Zehnerpotenz.
Somit nehmen n, 2n, 3n, 4n,... alle mögliche Reste an, die eine Zahl bei Teilung durch diese Zehnerpotenz haben kann.
Als Gegenbeispiel nehmen wir mal n=25. Die Vielfachen davon lassen bei Teilung z.B. durch 100 nur 4 verschiedene Reste, whrend z.B. die ersten 100 Vielfachen von 99 tatsächlich ale 100 möglichen Reste mod 100 lassen.
Da die Endziffern einer Zahl dem Rest der Zahl bei Teilung durch eine Zehnerpotenz entsprechen, solltest du in diese Richtung forschen.
Gruß Abakus

> Ich verstehe nur nicht, wie man ds mit dem Schubfachprinzip
> zeigt. Das Schubfachprinzip sagt doch nur aus: Falls man n
> Objekte auf m Mengen (n,m  > 0) verteilt, und n größer
> als m ist, dann gibt es mindestens eine Menge, in der mehr
> als ein Objekt landet.
>  
>
> Beispielsweise kann ich doch direkt für die 1 zeigen, das
> es Vielfache gibt, die nur aus der Ziffer 1 bestehen:
> 1,11,111,1111, ....
>  
> Wie viele Ziffern hat die kleinste dieser Vielfachen?
> Antwort: 1
>  
> Habe ich etwas falsch verstanden oder übersehen? Wie wäre
> denn ein Ansatz um es zu zeigen?
>  
>
> Vielen Dank
>  itse


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.mathebank.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]