Set finden in Komplexer Ebene < Fourier-Transformati < Transformationen < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) überfällig | Datum: | 16:21 Mi 23.07.2014 | Autor: | qsxqsx |
Hallo Leute,
Ich habe eine Fourierserientransformation einer bestimmten Art von Funktion f(x) (eigentlich kontinuierlich aber ich verwende die Diskrete-Transformation) und wuerde gerne das Set in das die Funktion im Fourierraum zu liegen kommt gerne definieren können. Leider beisse ich mir die Zaehne aus daran.
Die Formel fuer die Fourier Koeffizienten [mm] f_{n} [/mm] ist gegeben als:
[mm] f_{n}(w) [/mm] = [mm] \frac{1}{T}\sum_{k = 1}^{N} [/mm] f(x) [mm] \cdot e^{j \cdot nw \Delta t \cdot k} [/mm] mit [mm] -\infty [/mm] < n < [mm] +\infty.
[/mm]
Jetzt ist die Frage wie das Set aussieht in welchem ein bestimmtes [mm] f_{n} [/mm] in [mm] \mathbb{C} [/mm] zu liegen kommt. Kann mir jemand helfen? Ich habe schon im Buch "Complex Variables" von Fokas oder auch nach Trigonometrischen Polynomen gesucht komme aber nicht wirklich weiter.
Die Idee mit den Polynomen ist folgende P(z) > 0 wobei [mm] z_{k} [/mm] = [mm] e^{i \cdot \Delta t}^{k} [/mm] kann man durch einen konvexen Kegel ausdruecken.
Besten Dank.
Gruesse
qsxqsx
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 17:20 Do 31.07.2014 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|