www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - Stammfunktion einer E-Funktion
Stammfunktion einer E-Funktion < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktion einer E-Funktion: Idee
Status: (Frage) beantwortet Status 
Datum: 14:08 So 14.12.2008
Autor: Dorlechen

Aufgabe
Ein Pharmaunternehmen produziert ein Medikament, das in Tablettenform verabreichtRückfrage wird. Der zeitliche Verlauf der Wirkstoffkonzentration im Blut eines Patienten kann in den ersten 24 Stunden nach Einnahme einer Tablette näherungsweise durch die Funktion f mit [mm] f(t)=8\cdot\ [/mm] t [mm] \cdot\ [/mm] e^(-0.25t) ;beschrieben werden. Dabei wird die Zeit t in Stunden seit der Einnahme (t=0) und die Wirkstoffkonzentration f(t) im Blut in Milligramm pro Liter (mg/l) gemessen.

Weise nach, dass die Funktion F mit [mm] F(t)=-32\cdot\ [/mm] (t+4)/cdot/ e(8-0.25t) eine Stammfunktion von f ist.
Bestimmen Sie die mittlere Wirkstoffkonzentration in den ersten 12 Stunden nach der Einnahme des Medikamentes.

Also, wir haben das in der Schule gerechnet, und das hier gemacht:
F(t)= [mm] \integral\ [/mm] f(t) dt
= [mm] \integral\ [/mm] 8t [mm] \cdot\ [/mm] e^(-0.25t) dt

Das versteh ich auch noch...
Aber den nächsten Schritt verstehe ich leider nicht mehr:
= 8t [mm] \cdot\ (-4)\cdot\ [/mm] e^(0.25t) - [mm] \integral\ [/mm] 8 [mm] \cdot\ [/mm] (-4) [mm] \cdot\ [/mm] e^(0.25t) dt
= -32t [mm] \cdot\ [/mm] e^(0.25t) + [mm] 32\cdot\ [/mm] (-) [mm] \cdot\ [/mm] e^(0.25t)
= -32 (t+4) [mm] \cdot\ [/mm] e^(0.25t)
Wie kommt mein Lehrer da auf die -4???
Hat jemand eine Idee??
Freue mich über jeden kleinen Hinweis :)


        
Bezug
Stammfunktion einer E-Funktion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:34 So 14.12.2008
Autor: Ajnos

Hallöchen,
ich versuche mich mal an einen "kleinen" Hinweis. Und picke dazu nur den Knackpunkt [mm] e^{-0.25t} [/mm] raus:

also [mm] e^{-0.25t}= e^{-\bruch{1}{4}t} [/mm]
Um die Stammfunktion zu erhalten musst du "aufleiten", dazu holst du den Kehrwert von [mm] -\bruch{1}{4} [/mm] vor das e und hast somit
-4 [mm] e^{\bruch{1}{4}t} [/mm]
Ist das verständlich?


Bezug
                
Bezug
Stammfunktion einer E-Funktion: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:46 So 14.12.2008
Autor: Dorlechen

Aaaaah, super!! Da geht mir ein Licht auf...
Vielen vielen Dank!!!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.mathebank.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]