www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Schul-Analysis" - Stammfunktion gesucht
Stammfunktion gesucht < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stammfunktion gesucht: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 13:40 Sa 30.10.2004
Autor: Xandy

Hallo!
Wer kann mir bei folgender Aufgabe helfen?
"Gegeben ist die Ableitungsfunktion y´= [mm] 3:x^{4}. [/mm] Wie lautet die Stammfunktion?
Das Ergebnis ist -1:[mm]x^{3}[/mm]
Mittlerweile habe ich zwar herausgefunden, dass es Formeln dafür gibt, aber irgendwie weiß ich nicht, wie man die anwenden soll.

Danke!

        
Bezug
Stammfunktion gesucht: Stammfunktionen
Status: (Antwort) fertig Status 
Datum: 14:06 Sa 30.10.2004
Autor: PhiBa

Moin,

für solche Funktionen sind die Regeln eigentlich ganz einfach anzuwenden:


für  [mm]f(x) = n * x^a[/mm]
ergibt sich [mm] F(x) = \bruch{1}{a + 1} * n * x^{a + 1}[/mm]

Du kannst nun deine Formel

[mm]f(x) = 3 * \bruch{1}{x^4}[/mm]

umschreiben als

[mm]f(x) = 3 * x^{-4}[/mm] (Potenzgesetzte)

damit ist [mm]n = 3 [/mm] und [mm]a = -4 [/mm]

somit ist die Lösung:

[mm] \begin{matrix} F(x) &=& \bruch{1}{a + 1} * n * x^{a + 1} \\ \ &=& \bruch{1}{-4 + 1} * 3 * x^{-4 + 1}\\ \ &=& \bruch{1}{-3} * 3 * x^{-3}\\ \ &=& -x^{-3}\\ \ &=& - \bruch{1}{x^3}\\ \end{matrix} [/mm]

Hoffe ich konnte n bisschen helfen

MfG Philipp


Bezug
        
Bezug
Stammfunktion gesucht: weitere Aufgabe
Status: (Frage) beantwortet Status 
Datum: 09:30 So 31.10.2004
Autor: Xandy

Danke! Der Rechenweg hat mir sehr geholfen und ich konnte dadurch auch die weiteren Aufgaben rechnen. Bei folgender ähnlichen Aufgabe komme ich jedoch auch nicht weiter:
"Gegeben ist y´= [mm] \bruch{-cosx}{sin²x}[/mm]. Bestimme die Stammfunktion!"
Das Ergebnis lautet: [mm]\bruch{1}{sinx}[/mm]. Vielleich kann mir bei dieser Aufgabe nochmal jemand helfen? Danke!

Bezug
                
Bezug
Stammfunktion gesucht: Substitution
Status: (Antwort) fertig Status 
Datum: 12:04 So 31.10.2004
Autor: AT-Colt

Hallo Xandy,

bei diesem Problem musst Du vornehmlich geschickt substituieren.
Frag´ mich nicht, woran man erkennt, wie man substituieren muss, da bin ich auch denkbar schlecht drin, aber es geht meistens, wenn man ein paar Minuten lang ausprobiert:

[mm] $\integral {\bruch{-cos(x)}{sin^2(x)}dx} \overbrace{=}^{t:=sin(x)\,\,dt=cos(x)dx} \integral {\bruch{-cos(x)}{t^2}*\bruch{1}{cos(x)}dt} [/mm] = [mm] \integral {-\bruch{1}{t^2}dt} [/mm] = [mm] \bruch{1}{t} \underbrace{=}_{sin(x)=t} \bruch{1}{sin(x)}$ [/mm]

Das war die ganze Zauberei.

greetz

AT-Colt

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Schul-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.mathebank.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]