www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Stetigkeit" - Stetigkeit zeigen
Stetigkeit zeigen < Stetigkeit < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Stetigkeit zeigen: Aufgabe
Status: (Frage) überfällig Status 
Datum: 13:04 Mi 31.10.2007
Autor: LenaFre

Aufgabe
Sei X ein kompakter, metrischer Raum und [mm] \mu:C(X) \to \IR [/mm] linear und positiv.
Zeige: [mm] \mu:(C(X),d_{\infty}) \to \IR [/mm] ist stetig!

Hallo zusammen!

Ich hab folgenden Ansatz:
[mm] \mu:C(x)\to \IR [/mm] stetig [mm] \gdw \forall (f_{n})\subset [/mm] C(X), [mm] f_{n} \to [/mm] f
gilt [mm] \mu(f_{n})\to\mu(f) [/mm]

Sei also [mm] f_{n}\tof [/mm] konvergente Folge

Zeige: [mm] \forall \varepsilon [/mm] > 0 [mm] \exists n_{0} \forall [/mm] n [mm] \ge n_{0}: [/mm]
[mm] |\mu(f_{n})-\mu(f) [/mm] |< [mm] \varepsilon [/mm]

Ich darf außerdem noch benutzen, dass
[mm] |\mu(f)|\le\mu(|f|) [/mm]

Ich hoffe ihr könnt mir weiterhelfen!
Vielen Dank



        
Bezug
Stetigkeit zeigen: Antwort
Status: (Antwort) fertig Status 
Datum: 22:23 Do 01.11.2007
Autor: MatthiasKr

Hi,
> Sei X ein kompakter, metrischer Raum und [mm]\mu:C(X) \to \IR[/mm]
> linear und positiv.
> Zeige: [mm]\mu:(C(X),d_{\infty}) \to \IR[/mm] ist stetig!
>  Hallo zusammen!
>
> Ich hab folgenden Ansatz:
>  [mm]\mu:C(x)\to \IR[/mm] stetig [mm]\gdw \forall (f_{n})\subset[/mm] C(X),
> [mm]f_{n} \to[/mm] f
>   gilt [mm]\mu(f_{n})\to\mu(f)[/mm]
>  
> Sei also [mm]f_{n}\tof[/mm] konvergente Folge
>  
> Zeige: [mm]\forall \varepsilon[/mm] > 0 [mm]\exists n_{0} \forall[/mm] n [mm]\ge n_{0}:[/mm]
> [mm]|\mu(f_{n})-\mu(f)[/mm] |< [mm]\varepsilon[/mm]
>  
> Ich darf außerdem noch benutzen, dass
>   [mm]|\mu(f)|\le\mu(|f|)[/mm]
>  
> Ich hoffe ihr könnt mir weiterhelfen!
>  Vielen Dank
>  

mir kommt diese aufgabe ein bisschen spanisch vor, vielleicht koennen andere hier auch noch etwas dazu sagen.

1.) du sagst, [mm] \mu [/mm] soll positiv und linear sein. Hmm.[kopfkratz2] Normalerweise sollte eine lineare funktion an der stelle 0 (im vektorraum) den wert 0 annehmen. was eigentlich dann auch die existenz negativer funktionswerte impliziert. Merkwuerdig.

2.)laesst man diese bedenken einmal beiseite, koennte man so argumentieren

[mm] $|\mu(f_n)-\mu(f)|=|\mu(f_n-f)|\le \mu(|f_n-f|)$ [/mm]

da [mm] \mu [/mm] linear ist, muss es gegen 0 gehen, wenn das argument gegen 0 geht. Aber: wir nutzen dann nicht die kompaktheit des raumes aus...

gruss
matthias



Bezug
        
Bezug
Stetigkeit zeigen: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Fr 02.11.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stetigkeit"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.mathebank.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]