Surjektive lineare Abbildung < Abbildungen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Geben sie eine surjektive lineare Abbildung von [mm] \IR^7 [/mm] nach [mm] \IR^5 [/mm] an. Zeigen Sie dass es keine lineare Abbildung von [mm] \IR^5 [/mm] nach [mm] \IR^7 [/mm] gibt. |
Hallo,
da bin ich wieder. Ich weiß dass sind sicherlich simple Aufgaben aber ich kenn die herangehensweise noch nicht.
Die Aufgabe will von mir dass ich eine Abbildung die surjektiv ( zu jedem y [mm] \in [/mm] Y ein x [mm] \in [/mm] X mit f(x)=y) und linear ( also: f(x+y)=f(x)+f(y) und f( [mm] \lambda [/mm] x)= [mm] \lambda [/mm] f(x) finde.
Wie zeige ich dass? Und kann mir jemand bitte noch auf verständliche Art und Weise erklären was surjektiv und injektiv ist, denn ich glaube ich kann mir dass nicht richtig vorstellen.
Danke für eure Hilfe
|
|
|
|
> Geben sie eine surjektive lineare Abbildung von [mm]\IR^7[/mm] nach
> [mm]\IR^5[/mm] an. Zeigen Sie dass es keine lineare Abbildung von
> [mm]\IR^5[/mm] nach [mm]\IR^7[/mm] gibt.
> Hallo,
>
> da bin ich wieder. Ich weiß dass sind sicherlich simple
> Aufgaben aber ich kenn die herangehensweise noch nicht.
>
> Die Aufgabe will von mir dass ich eine Abbildung die
> surjektiv ( zu jedem y [mm]\in[/mm] Y ein x [mm]\in[/mm] X mit f(x)=y) und
> linear ( also: f(x+y)=f(x)+f(y) und f( [mm]\lambda[/mm] x)= [mm]\lambda[/mm]
> f(x) finde.
>
> Wie zeige ich dass? Und kann mir jemand bitte noch auf
> verständliche Art und Weise erklären was surjektiv und
> injektiv ist, denn ich glaube ich kann mir dass nicht
> richtig vorstellen.
Hallo,
surjektiv ist, wenn Du jedes Element der Wertemenge mit der Abbildung "erwischst", auf jedes muß eins abgebildet werden.
Injektiv ist, wenn nicht auf ein Element der Wertemenge zwei der Definitionsmenge abgebildet werden.
Für diese Aufgabe brauchst Du weiter wichtige Kenntnisse über lineare Abbildungen, z.B. das eine lineare Abbildung durch Ihr Bild auf einer Basis eindeutig bestimmt ist, und daß die Bilder der Basis das Bild der Abbildung aufspannen.
Wenn die funktion surjektiv sein soll, müssen die Bilder der Basis also den kompletten [mm] \IR^5 [/mm] aufspannen, d.h. die Menge der Bilder der Basisvektoren muß eine Basis des [mm] \IR^5 [/mm] enthalten.
> Zeigen Sie dass es keine lineare Abbildung von
> [mm]\IR^5[/mm] nach [mm]\IR^7[/mm] gibt.
Ich vermute mal, daß Du hier etwas wichtiges vergessen hast, denn eine lineare Abbildung gibt es da durchaus.
Allerdings keine surjektive, und wenn Du Dir zu Gemüte geführt hast, was ich oben schrieb, dann weißt Du auch warum.
Gruß v. Angela
|
|
|
|