www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Funktionen" - Taylorreihe
Taylorreihe < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Taylorreihe: Korrektur
Status: (Frage) beantwortet Status 
Datum: 13:39 Mo 16.06.2014
Autor: Kruemel1008

Aufgabe
Bestimmen Sie die Taylorreihe samt Konvergenzradius zum Entwicklungspunkt a=0 der folgenden Funktion.
[mm] f(x):=\bruch{1}{2}(e^{x}+e^{-x}) [/mm] für [mm] x\in\IC [/mm]

Wir haben eine ähnliche Aufgabe im Unterricht gemacht, ich habe versucht diese auf meine Aufgabe zu beziehen aber ich glaub irgendwas ist falsch, ich weis nur nicht was...
[mm] e^{x}=\summe_{k=0}^{\infty}\bruch{x^{k}}{k!} [/mm]
[mm] e^{-x}=\summe_{k=0}^{\infty}\bruch{(-x)^{k}}{k!} [/mm]
[mm] f(x)=\bruch{1}{2}(\summe_{k=0}^{\infty}\bruch{x^{k}}{k!}+\summe_{k=0}^{\infty}\bruch{1}{k!}(-1)^{k}x^{k}) [/mm]
[mm] =\bruch{1}{2}(\summe_{k=0}^{\infty}\bruch{1}{k!}(1+(-1)^{k})x^{k}) [/mm]
=0, falls k ungerade
=2, falls k gerade
k=2l+1
[mm] =\bruch{1}{2}(\summe_{l=0}^{\infty}2*\bruch{1}{(2l+1)!}*x^{2l+1}) [/mm]
[mm] =\summe_{l=0}^{\infty}2*\bruch{1}{(2l+1)!}*x^{2l+1} [/mm]

        
Bezug
Taylorreihe: Antwort
Status: (Antwort) fertig Status 
Datum: 13:45 Mo 16.06.2014
Autor: fred97


> Bestimmen Sie die Taylorreihe samt Konvergenzradius zum
> Entwicklungspunkt a=0 der folgenden Funktion.
>  [mm]f(x):=\bruch{1}{2}(e^{x}+e^{-x})[/mm] für [mm]x\in\IC[/mm]
>  Wir haben eine ähnliche Aufgabe im Unterricht gemacht,
> ich habe versucht diese auf meine Aufgabe zu beziehen aber
> ich glaub irgendwas ist falsch, ich weis nur nicht was...
>  [mm]e^{x}=\summe_{k=0}^{\infty}\bruch{x^{k}}{k!}[/mm]
>  [mm]e^{-x}=\summe_{k=0}^{\infty}\bruch{(-x)^{k}}{k!}[/mm]
>  
> [mm]f(x)=\bruch{1}{2}(\summe_{k=0}^{\infty}\bruch{x^{k}}{k!}+\summe_{k=0}^{\infty}\bruch{1}{k!}(-1)^{k}x^{k})[/mm]
>  
> [mm]=\bruch{1}{2}(\summe_{k=0}^{\infty}\bruch{1}{k!}(1+(-1)^{k})x^{k})[/mm]
>  =0, falls k ungerade
>  =2, falls k gerade
>  k=2l+1
>  
> [mm]=\bruch{1}{2}(\summe_{l=0}^{\infty}2*\bruch{1}{(2l+1)!}*x^{2l+1})[/mm]


Hier muss es doch lauten:

[mm] =\bruch{1}{2}(\summe_{l=0}^{\infty}2*\bruch{1}{(2l)!}*x^{2l}) [/mm]


>  [mm]=\summe_{l=0}^{\infty}2*\bruch{1}{(2l+1)!}*x^{2l+1}[/mm]  

Und hier

[mm] =\summe_{l=0}^{\infty}\bruch{1}{(2l)!}*x^{2l} [/mm]

FRED


Bezug
                
Bezug
Taylorreihe: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:52 Mo 16.06.2014
Autor: Kruemel1008

Ah, super, danke :D

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.mathebank.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]