www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Reelle Analysis mehrerer Veränderlichen" - Totale Differentiation
Totale Differentiation < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Totale Differentiation: Zusammenhänge
Status: (Frage) überfällig Status 
Datum: 17:55 Do 04.03.2010
Autor: EffiBriest

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Ich lerne grad für meine Zwischenprüfung in Analysis und bin dabei auf totale Differentation gestoßen, kann mir aber nichts wirklich drunter vorstellen.
bedeutet total differenzierbar, dass eine funktion in allen richtungen durch eine lineare funktion angenähert werden kann, und partiell integrierbar dann dass diese annäherung nur in jeweils eine richtung möglich ist? und warum ermöglicht die stetigkeit der partiellen ableitungen dann dass die funktion doch total differenzierbar ist?
und es gilt ja , dass f(x+z)=f(x)+A*z+Restterm. und a ist ja eine Matrix. Ist A dann die Jacobi-Matrix oder was hat die damit zu tun??????
ich hoffe irgendwer kann mir erklären was ich mir unter der totalen differentation vorstellen kann ich versteh nämlich überhaupt nicht wofür man die braucht!?!
Liebe grüße und danke....

        
Bezug
Totale Differentiation: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:20 Mo 08.03.2010
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
        
Bezug
Totale Differentiation: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:15 Mo 08.03.2010
Autor: straussy

Stell dir das Ganze mal eindimensional vor. Dort kann man durch die Taylorentwicklung eine Funktion auch durch ihre Ableitung annähern. Das Gleiche funktioniert auch in höherdimensionalen Räumen. Nur, dass man jetzt noch die Richtung mit einbeziehen muss.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.mathebank.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]