Trapezregel, R-integrierbar < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:05 So 07.02.2016 | Autor: | sissile |
Aufgabe | Die einfachsten Quadraturformeln sind die Mittelpunktformel
M[f]:= (b-a) [mm] f(\frac{a+b}{2})
[/mm]
und die Trapezformel
T[f]:= [mm] \frac{b-a}{2} [/mm] (f(a) + f(b))
Nun kann man das Intervall [a,b] in m Teilintervalle zerlegen und die enstprechende Formel auf jedes Teilintervall anwenden. Bei der Mittelpunktformel ergibt sich so eine spezielle Riemannsche Zwischensumme, die Trapezformel führt auf die sogenannte Trapezsumme.
Für [mm] a=x_0
[mm] T_m [/mm] [f]:= [mm] \sum_{i=0}^{m-1} \frac{x_{i+1} -x_i}{2} (f(x_i) [/mm] + [mm] f(x_{i+1}))
[/mm]
Für äquidistante Teilintervalle [mm] x_i=a+ih, [/mm] i=0,..,m, [mm] h=\frac{b-a}{m} [/mm] ergibt sich
[mm] \frac{h}{2} [/mm] f(a) + h [mm] \sum_{i=}^{m-1} f(x_i) [/mm] + [mm] \frac{h}{2} [/mm] f(b)
Man macht sich leicht klar, daß die beiden zusammengesetzten Quadraturverfahren für m [mm] \rightarrow \infty [/mm] gegen das Intergral von f konvergieren, falls f über [a,b] Riemann-integrierbar ist. |
Hallo,
Bei der zusammengesetzten Mittelpunktformel ist das klar, aber nicht bei der Trapezsumme.
Wäre f stetig so würde aufgrund des zwischenwertsatzes alle Funktionenwerte angenommen werden, insbesondere der Mittelpunkt jedes teilintervalls. [mm] T_m[f] [/mm] wäre so wieder eine spezielle Zwischensumme.
Für allgemeines R-intgegrierbares f war mein Versuch: [mm] \frac{f(x_i)+f(x_{i+1})}{2}=f(x_i) [/mm] + [mm] \frac{f(x_{i+1}) - f(x_i)}{2}
[/mm]
[mm] |f(x_{i+1}) [/mm] - [mm] f(x_i)| (x_{i+1} [/mm] - [mm] x_i) \le (sup_{x_i \le x \le x_{i+1}} [/mm] f(x) - [mm] inf_{x_i \le x \le x_{i+1}} [/mm] f(x)) [mm] (x_{i+1} [/mm] - [mm] x_i)
[/mm]
Aufsummiert [mm] \sum_{i=0}^{m-1}|f(x_{i+1}) [/mm] - [mm] f(x_i)| (x_{i+1} [/mm] - [mm] x_i) \le O_{Z(a,b)}(f) [/mm] - [mm] U_{Z(a,b)} [/mm] (f)
[mm] T_m[f]=\sum_{i=0}^{m-1} (x_{i+1} [/mm] - [mm] x_i) f(x_i) [/mm] + [mm] \sum_{i=0}^{m-1} \frac{x_{i+1} - x_i}{2} (f(x_{i+1})-f(x_i)) \le \frac{1}{2} [O_{Z(a,b)} [/mm] (f) - [mm] U_{Z(a,b)} [/mm] (f)] + [mm] O_{Z(a,b)}
[/mm]
Nun bräuchte ich ja noch eine Abschätzung nach unten?
(Ich möchte nicht mittels Newton Cotes oder so argumentieren sondern wirklich wie im Buch steht nur direkt über die Eigenschaft der Riemannintegrierbarkeit)
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 08:36 Mo 08.02.2016 | Autor: | hippias |
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
Ich würde so rechnen: $T_m[f]:= \sum_{i=0}^{m-1} \frac{x_{i+1} -x_i}{2} (f(x_i)+ f(x_{i+1}))= \frac{1}{2}\left(\sum_{i=0}^{m-1} (x_{i+1} -x_i})f(x_i)+ \sum_{i=0}^{m-1} (x_{i+1} -x_i})f(x_{i+1})\right)$. Beide Summen sind nun Riemannsummen mit den Stützstellen linker bzw. rechter Rand des Teilintervalls...
|
|
|
|