Treppenfunktionen < Integration < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 14:16 Mo 22.09.2008 | Autor: | xxxx |
Aufgabe | Berechne das Integral von [mm] x^2 [/mm] ohne den Hauptsatz der Integral und Differentialrechnung zu benutzen. |
Hallo Zusammen,
unr zwar hatten wir in der Vorlesung ein Beispiel, wie man ein Integral ausrechnen kann, ohne den Hauptsatz der Integral und Differentialrechnung zu benutzen, ich hab das Beispiel auch fast verstanden, nur ein Schritt ist mir unklar, viell könnte mir jemand ihn erklären:
f : [0,b] [mm] \to \IR, [/mm] f(x) = [mm] x^2 [/mm] fuer n [mm] \in \IN [/mm] sei
[mm] Z_n [/mm] = {0 < [mm] \bruch{1}{n}b [/mm] < [mm] \bruch{2}{n}b [/mm] < ... < [mm] \bruch{n-1}{n}b [/mm] < b}
Fuer x [mm] \in [/mm] [bruch{k-1}{n}b , [mm] \bruch{k}{n}b [/mm] wähle [mm] \delta_n(x) [/mm] = ( [mm] \bruch{k}{n}b)^2 [/mm] , [mm] \delta_n(b) [/mm] = [mm] b^2 [/mm] Dann ist
(hier bin ich mir nicht so sicher, warum das [mm] \delta_n(x) [/mm] und [mm] \delta_n(b) [/mm] so gewählt wird... ich mein das ist ja meine Treppenfunktion...)
||f - [mm] \delta_n|| [/mm] = max{|( [mm] \bruch{k-1}{n}b)^2 [/mm] - ( [mm] \bruch{k}{n}b)^2| [/mm] : k = 1,.....,n } = [mm] b^2 [/mm] - ( [mm] \bruch{n-1}{n}b)^2 [/mm]
(hier versteh ich nicht ganz, welches Maximum genau berechnet wird...ich dachte der unterschied zwischen der Treppen und der Funktion....)
Also ||f- [mm] \delta_n|| \to [/mm] 0 fuer n [mm] \to \infty
[/mm]
nach der Definition folgt
[mm] \integral_{b}^{0}{x^2) dx} [/mm] = [mm] \limes_{n\rightarrow\infty} \integral_{b}^{0}{ \delta_n dx} [/mm] = [mm] \limes_{n\rightarrow\infty} \summe_{k=1}^{n} [/mm] ( [mm] \bruch{k}{n}b)^2 [/mm] * [mm] \bruch{1}{n}b [/mm] = [mm] \bruch{(b^3)}{3}
[/mm]
also wie man hier auf das Endergebnis kommt ist mir auch klar, nur ich versteh nicht ganz woher das ( [mm] \bruch{k}{n}b)^2 [/mm] und ( [mm] \bruch{1}{n})b [/mm] hinter dem Summenzeichen kommt...
wäre echt super nett, wenn mir jemand helfen könnte...
lg xxxx
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:50 Mo 22.09.2008 | Autor: | Merle23 |
> Berechne das Integral von [mm]x^2[/mm] ohne den Hauptsatz der
> Integral und Differentialrechnung zu benutzen.
> Hallo Zusammen,
> unr zwar hatten wir in der Vorlesung ein Beispiel, wie man
> ein Integral ausrechnen kann, ohne den Hauptsatz der
> Integral und Differentialrechnung zu benutzen, ich hab das
> Beispiel auch fast verstanden, nur ein Schritt ist mir
> unklar, viell könnte mir jemand ihn erklären:
>
> [mm]f : [0,b] \to \IR, f(x) = x^2[/mm]. Für [mm] n\in\IN [/mm] sei
>
> [mm]Z_n = \{0 < \bruch{1}{n}b < \bruch{2}{n}b < ... < \bruch{n-1}{n}b < b\}[/mm]
>
> Fuer x [mm]\in [\bruch{k-1}{n}b , \bruch{k}{n}b)[/mm] wähle
> [mm]\delta_n(x) = (\bruch{k}{n}b)^2[/mm], [mm]\delta_n(b) = b^2[/mm] Dann
> ist
>
> (hier bin ich mir nicht so sicher, warum das [mm]\delta_n(x)[/mm]
> und [mm]\delta_n(b)[/mm] so gewählt wird... ich mein das ist ja
> meine Treppenfunktion...)
Und diese Treppenfunktion hat auf den Intervallen [mm][\frac{k-1}{n}b,\frac{k}{n}b)[/mm] den Funktionswert [mm] (\frac{k}{n}b)^2 [/mm] und im Punkt b den Funktionswert [mm] b^2.
[/mm]
Die Treppenfunktion wird so gewählt, weil sie die ursprüngliche Funktion approximieren soll. Dazu wird die Treppenfunktion auf jeder Treppenstufe auf einen Wert der ursprünglichen Funktion gesetzt - in diesem Falle auf den Wert am rechten Ende des Intervalls.
>
> [mm]||f - \delta_n|| = max\{|(\bruch{k-1}{n}b)^2 - (\bruch{k}{n}b)^2|:k = 1,...,n \} =b^2 - (\bruch{n-1}{n}b)^2[/mm]
>
> (hier versteh ich nicht ganz, welches Maximum genau
> berechnet wird...ich dachte der unterschied zwischen der
> Treppen und der Funktion....)
>
Genau dieser Unterschied wird auch berechnet. Wenn du dir das ganze malst (also die Funktion [mm] x^2 [/mm] und die Treppenfunktion), dann wirst du sehen, dass die Funktion [mm] x^2 [/mm] immer unter der Treppenfunktion verläuft und am rechten Ende der Intervalle immer "zusammentreffen". Daraus folgt diese Abschätzung.
> Also [mm]||f - \delta_n|| \to 0 [/mm] fuer [mm] n\to\infty
[/mm]
>
> nach der Definition folgt
> [mm]\integral_{b}^{0}{x^2 dx}[/mm] = [mm]\limes_{n\rightarrow\infty} \integral_{b}^{0}{ \delta_n dx}=[/mm]
> [mm]=\limes_{n\rightarrow\infty} \summe_{k=1}^{n} (\bruch{k}{n}b)^2 \bruch{1}{n}b=[/mm]
> [mm]=\bruch{(b^3)}{3}[/mm]
>
> also wie man hier auf das Endergebnis kommt ist mir auch
> klar, nur ich versteh nicht ganz woher das
> [mm](\bruch{k}{n}b)^2[/mm] und [mm](\bruch{1}{n})b[/mm] hinter dem
> Summenzeichen kommt...
Hier wird einfach das Integral über die Treppenfunktion ersetzt durch die entsprechende Summe (laut Definition des Integrals für Treppenfunktionen) - Funktionswert mal Intervalllänge.
|
|
|
|