Umformungsverständnis < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 11:24 Fr 06.11.2009 | Autor: | LN- |
Aufgabe | Folgende Gleichung (Thema Diffusion)
[mm]
grad\ p = \bruch{1}{S}\ grad\ c - \bruch{c}{S^2} \bruch{\partial S}{\partial p}\ grad\ p
[/mm]
wird umgeformt zu:
[mm]
grad\ p = \bruch{1}{S \left(1+\bruch{\partial\ ln\ S}{\partial\ ln\ p}\right)}\ grad\ c
[/mm]
|
Hallo,
Meine Frage ist, wie diese Umformung zu Stande kommt und woher der Logarithmus kommt. Ist diese Umformung möglich, ohne eine weitere Gleichung durch eine andere Bedingung zu ersetzen?
Die Umformung stammt aus der Literatur und ich muss diesen Schritt nachvollziehen, klappt aber leider nicht, weil ich fürchte ich verstehe den mathematischen Hintergrund nicht.
Ich wäre über Hilfe sehr dankbar...
viele Grüße, Ellen
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt
|
|
|
|
Hallo LN-,
> Folgende Gleichung (Thema Diffusion)
> [mm]
grad\ p = \bruch{1}{S}\ grad\ c - \bruch{c}{S^2} \bruch{\partial S}{\partial p}\ grad\ p
[/mm]
>
> wird umgeformt zu:
>
> [mm]
grad\ p = \bruch{1}{S \left(1+\bruch{\partial\ ln\ S}{\partial\ ln\ p}\right)}\ grad\ c
[/mm]
>
> Hallo,
> Meine Frage ist, wie diese Umformung zu Stande kommt und
> woher der Logarithmus kommt. Ist diese Umformung möglich,
> ohne eine weitere Gleichung durch eine andere Bedingung zu
> ersetzen?
Die erste Gleichung geht aus der Gleichung
[mm]p=\bruch{c}{S\left(p\right)}[/mm]
hervor.
Für die Umformung benutze diesen Zusammenhang.
> Die Umformung stammt aus der Literatur und ich muss diesen
> Schritt nachvollziehen, klappt aber leider nicht, weil ich
> fürchte ich verstehe den mathematischen Hintergrund
> nicht.
Ich frage mich, ob die Umformung so richtig ist:
[mm]
grad\ p = \bruch{1}{S \left(1+\bruch{\partial\ ln\ S}{\partial\ ln\ p}\right)}\ grad\ c
[/mm]
Ich komme jedenfalls auf
[mm]
grad\ p = \bruch{1}{S \left(1+\blue{p}*\bruch{\partial\ ln\ S}{\blue{\partial\ p}}\right)}\ grad\ c
[/mm]
> Ich wäre über Hilfe sehr dankbar...
> viele Grüße, Ellen
>
> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt
Gruss
MathePower
|
|
|
|
|
Status: |
(Frage) beantwortet | Datum: | 20:17 So 08.11.2009 | Autor: | LN- |
Hallo MathePower,
Danke für die Antwort!
Hmmm, das ist ja interessant, die Umformung stammt aus einem Paper, das ich verstehn muss. Wäre ziemlich blöde, wenn es falsch wär aber das will dann wohl nochmal geprüft werden. Ich habe irgendwie leider immer noch nicht ganz verstanden, wie man das umformt. Gibt es vielleicht Zwischenschritte, die du mir zeigen kannst?
viele Grüße,
Ellen
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 20:44 So 08.11.2009 | Autor: | rainerS |
Hallo Ellen!
> Hallo MathePower,
>
> Danke für die Antwort!
> Hmmm, das ist ja interessant, die Umformung stammt aus
> einem Paper, das ich verstehn muss. Wäre ziemlich blöde,
> wenn es falsch wär aber das will dann wohl nochmal
> geprüft werden. Ich habe irgendwie leider immer noch nicht
> ganz verstanden, wie man das umformt. Gibt es vielleicht
> Zwischenschritte, die du mir zeigen kannst?
Es ist immer nur die Kettenregel. Für eine beliebige Funktion von S gilt:
[mm] \bruch{\partial f(S)}{\partial p} = f'(S) \bruch{\partial S}{\partial p} [/mm]
Für den Fall $f(S) = [mm] \ln [/mm] S $ ergibt sich sofort
[mm] \bruch{\partial \ln S }{\partial p} = \bruch{1}{S} \bruch{\partial S}{\partial p} [/mm].
Analog:
[mm] \bruch{\partial S}{\partial p} = \bruch{\partial S}{\partial \ln p} * \bruch{\partial \ln p}{\partial p} = \bruch{1}{p} \bruch{\partial S}{\partial \ln p} [/mm],
oder
[mm] \bruch{\partial S}{\partial \ln p} = p \bruch{\partial S}{\partial p} [/mm]
Zusammen:
[mm] \bruch{\partial \ln S }{\partial \ln p} = \bruch{p}{S} \bruch{\partial S}{\partial p} [/mm] .
Wenn du in der Ausgangsgleichung
[mm] $ \mathop{\mathrm{grad}} p = \bruch{1}{S}\mathop{\mathrm{grad}} c - \bruch{c}{S^2} \bruch{\partial S}{\partial p}\mathop{\mathrm{grad}} p [/mm]
die Identität $ [mm] \bruch{c}{S} [/mm] = p $ einsetzt und beide Terme mit [mm] $\mathop{\mathrm{grad}} [/mm] p $ auf die linke seite bringst:
[mm] $ \mathop{\mathrm{grad}} p + \bruch{p}{S} \bruch{\partial S}{\partial p}\mathop{\mathrm{grad}} p= \bruch{1}{S}\mathop{\mathrm{grad}} c [/mm],
dann musst du nur noch die obige Beziehung einsetzen.
Viele Grüße
Rainer
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 09:23 Mo 09.11.2009 | Autor: | LN- |
Vielen Dank! Jetzt kann ich es nachvollziehen, aber ich glaub da wär ich selbst nicht draufgekommen...
|
|
|
|