Umkehrfunktion < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 22:09 Mi 30.11.2011 | Autor: | Physy |
Ich soll in einer Teilaufgabe [mm] (f^{-1})'(u,v)*f^{-1}(u,v) [/mm] mit (u,v) = f(x,y) bestimmen. Die Funktion sieht so aus:
f: [mm] \IR^{2} [/mm] -> [mm] \IR^{2} [/mm] mit f(x,y) = [mm] (x^{2}-y^{2},2xy)^{T}
[/mm]
Wie ich [mm] (f^{-1})'(u,v) [/mm] bestimme ist mir klar, nämlich über den Umkehrsatz, denn f ist stetig diffbar und die determinante der Jacobimatrix ist ungleich 0, falls (x,y) [mm] \not= [/mm] (0,0). Aber da fängt das Problem schon an, da ich ja dann den Fall (0,0) nicht betrachten kann. für den zweiten Faktor des Produkts weiß ich aber nicht wie ich rangehen soll. Wie bestimme ich denn eine Umkehrfunktion?
ich könnte sagen
[mm] x^{2}-y^{2} [/mm] = u
2xy = v
und dann das Gleichungssystem lösen, jedoch wären die Lösungen dann nicht eindeutig und wie soll es denn dann überhaupt eine Umkerfunktion geben? Kann mir jemand helfen?
Danke im Voraus
|
|
|
|
Hallo,
> Ich soll in einer Teilaufgabe [mm](f^{-1})'(u,v)*f^{-1}(u,v)[/mm]
> mit (u,v) = f(x,y) bestimmen. Die Funktion sieht so aus:
>
> f: [mm]\IR^{2}[/mm] -> [mm]\IR^{2}[/mm] mit f(x,y) = [mm](x^{2}-y^{2},2xy)^{T}[/mm]
>
> Wie ich [mm](f^{-1})'(u,v)[/mm] bestimme ist mir klar, nämlich
> über den Umkehrsatz, denn f ist stetig diffbar und die
> determinante der Jacobimatrix ist ungleich 0, falls (x,y)
> [mm]\not=[/mm] (0,0). Aber da fängt das Problem schon an, da ich ja
> dann den Fall (0,0) nicht betrachten kann. für den
> zweiten Faktor des Produkts weiß ich aber nicht wie ich
> rangehen soll. Wie bestimme ich denn eine Umkehrfunktion?
>
> ich könnte sagen
>
> [mm]x^{2}-y^{2}[/mm] = u
> 2xy = v
>
> und dann das Gleichungssystem lösen, jedoch wären die
> Lösungen dann nicht eindeutig und wie soll es denn dann
> überhaupt eine Umkerfunktion geben? Kann mir jemand
> helfen?
>
deine funktion ist nicht global umkehrbar, deshalb gibt es so etwas wie eine global definierte umkehrfunktion nicht. scharfes hinsehen verrät, dass die funktion so etwas wie eine drehsymmetrie besitzt ($f(x,y)=f(-x,-y)$) man könnte sich bei der definition der umkehrfunktion z.B. auf eine bestimmte halbebene beschränken.
das gleichungssystem sollte dann recht leicht lösbar sein. untere gleichung zB. nach x auflösen, oben einsetzen, lösen. musst noch eine fallunterscheidung machen, ob v=0 ist.
gruss
matthias
> Danke im Voraus
|
|
|
|