Untersuchung einer Funktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 18:45 Mo 19.10.2015 | Autor: | Joseph95 |
Aufgabe | Untersuchen Sie die Funktion [mm] f:\IN \to \IN [/mm] mit
[mm] f(x)=\begin{cases} 2x, & \mbox{falls 2|!x} \\ \bruch{x}{2} + 1, & \mbox{falls 4|x } \\ x-2, & \mbox{falls 2|x und 4|!x } \end{cases}
[/mm]
auf Injektivität, Surjektivität und Bijektivität. |
Schonmal vorab, ich benutze hier k|l falls k ein Teiler l ist und k|!l falls k kein Teiler von l ist.
Hey Community,
wie oben schon beschrieben suche ich euren Rat. :D
Also ich soll die FUnktion auf Injektivität, Surjektivität und Bijektivität untersuchen. Generell würd ich zunächst vorgehen in dem ich zeige, dass die gesamten Teilfunktionen alles lineare Funktionen sind und zeigen, dass jeder dieser linearen FUnktion bijektiv ist. Daraus würde ich folgern, dass die Funktion in Ihrer Gesamtheit selbst bijektiv ist. Ist das so richtig? Wäre toll wenn mir jemand dabei helfen könnte, da ich noch nie FUnktionen mit der Bedingung der Teilbarkeit untersucht habe.
Viele Grüße und danke im voraus
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 22:31 Mo 19.10.2015 | Autor: | chrisno |
Hallo,
Wenn die Teilfunktionen bijektiv sind, können dennoch zwei Element aus der Definitionsmenge der gesamten Funktion auf das gleiche Ziel abgebildet werden.
Von daher kannst Du also diese Funktionen als Funktionen in R untersuchen und die Schnittpunkte berechnen. Zeige dann, dass die Schnittpunkte von der ursprünglichen Funktion nur höchstens einmal getroffen werden. Die saubere Argumentation, wieso man das so machen kann, musst Du noch liefern. Wie Du so die Surjektivität zeigen kannst, sehe ich nicht.
Ich hätte ganz naiv diesen Weg gewählt:
Zur Injektivität: Du musst zeigen, dass es nicht vorkommen kann, dass man für eine Zahl aus N nicht eindeutig das Urbild findet, falls es eines gibt. Anders herum ausgedrückt:
Falls 2|!x sind Bilder: 2, 6 , 10, 14 ...
Falls 4x: 1, 3, 5, 7, ....
sonst: 0, 4, 8, ...
zu zeigen: es gibt keine Zahl aus N, die in zwei dieser Mengen vorkommt.
Für die Surjektivität musst Du zeigen, dass die obigen Mengen zusammen N abdecken. Daher ist es eine Idee, direkt so loszulegen. Gibt es eine Funktionsvorschrift, mit der sich die Abblidung umkehren lässt? Wenn Du die angeben und beweisen kannst, dann hast Du sowieso schon die Bijektivität geschafft.
|
|
|
|