Vektorgeometrie Oktaeder,Kugel < Geraden und Ebenen < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 08:15 Mo 05.03.2012 | Autor: | qsxqsx |
Hallo!,
Ich muss jemandem hier diese Aufgabe erklären, leider komm ich selbst nich mehr weiter bzw. auf die Idee wie man das am einfachsten löst - ich selbst komme nur auf einen Lösungsweg mit Integrieren, einen einfachen seh ich leider nicht.
Gegeben sind die Ecken A(7/1/8) und B(1/1/2) eines regulären Oktaeders ABCDEF . Die B benachbarte Ecke C liege in der xy-Ebene (= pi1-Ebene). Berechnen sie die weiteren Ecken des Oktaeders (man wähle die Lösung bei der C positive y-Koordinate hat).
Die Kantenmittelkugel des Oktaeders ist diejenige Kugel, welche alle Kanten des Körpers in den Kantenmitten berührt. Wie gross ist das vom Oktaeder und der Kantenmittelkugel gemeinsam eingeschlossene Volumen?
Also die Ecken des Oktaeders kann ich selbstverständlich berechnen. Nur wie rechne ich am besten das gemeinsame Volumen aus? Ich komm nich drauf. Da werden so doofe Kugelsegmente durchs Oktaeder abgeschnitten. Weiss nich wie ich die ohne Integration berechnen soll.
Grüsse&Dank!
|
|
|
|
Hallo,
wenn ich das richtig verstehe, dann sind das acht Kugelkalotten, die aus dem Oktaeder herausragen. Den Radius der Kugeln kann man als Abstand einer Seitenkante zum Mittelpunkt bekommen, und die Höhe der Kalotte über den Satz des Pythagoras. Bestimme dazu zunächst den Radius von einem der Schnittkreise (das sind Inkreise der Seitendreiecke) und dann über den Pythagoras die Höhe der Kalotte. Nutze letzendlich
[mm] V=\bruch{h^2\pi}{3}(3r-h)
[/mm]
für das Volumen der Kalotten.
Gruß, Diophant
|
|
|
|