Vektorrechnung / Skalarprodukt < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 21:34 Sa 11.06.2005 | Autor: | Marie |
Hallo!!
Ich habe ein großes Problem da ich am Montag eine Matheklausur über die Vektorrechnung schreibe und mit "Elementargeometrischen Anwendungen" überhaupt nicht klarkomme.
Es geht zum Beispiel um folgende Aufgabe:
Zeige, dass die Seitenhalbierenden eines gleichschenkligen Dreiecks Höhen sind (natürlich mit Hilfe des Skalarproduktes usw.)
Ich verstehe nun gar nicht wie ich das beweisen soll und welche Regeln ich überhaupt bei einem solchen Aufgabentyp beachten muss..
|
|
|
|
Hallo,
dazu brauchst Du m.E. folgende Sachverhalte:
1. wenn zwei Vektoren im 90-Grad-Winkel aufeinander stehen, dann nennt man sie orthogonal und dann ist das skalarprodukt dieser beiden Vektoren 0.
2. die zu beweisende Behauptung ist nicht abhängig von der Lage des Dreiecks im Koordinatensystem.
Den zweiten Punkt musst Du sicher nicht beweisen und kannst ihn so benutzen.
Damit kannst Du zwei Vekton so wählen, dass Du darüber alle gleichschenklichen Dreiecke bilden kannst.
Du nimmst z.B. v, w [mm] \in \IR^2 [/mm] und schreibst sie als
[mm] v=\vektor{x \\ y} [/mm]
[mm] w=\vektor{-x \\ y}
[/mm]
die Länge der Vektoren ist gleich (solltest Du sauber zeigen => [mm] \wurzel{x^2+y^2}=\wurzel{(-x)^2+y^2}). [/mm] Du setzt dann den Vektor [mm] u:=v-w=\vektor{2x \\ 0} [/mm] und erhälst somit ein Dreieck, aus den Vektoren u, v und w.
Die Seitenhalbierende ist dann durch den Vektor [mm] v-\bruch{1}{2}*u [/mm] darstellbar und Du musst nur noch zeigen, dass sie zu [mm] \bruch{1}{2}*u [/mm] orthogonal ist indem Du das Skalarprodukt ausrechnest und zeigst, dass es unabhängig von der Wahl von x und y immer 0 ist.
Übrigens: Wenn [mm] \bruch{1}{2}*u [/mm] orthogonal ist, dann ist natürlich auch u orthogonal.
Ich hoffe, das hat Dir weitergeholfen.
Gruß
Jürgen
|
|
|
|
|
Hallo Marie,
> Hallo!!
> Ich habe ein großes Problem da ich am Montag eine
> Matheklausur über die Vektorrechnung schreibe und mit
> "Elementargeometrischen Anwendungen" überhaupt nicht
> klarkomme.
> Es geht zum Beispiel um folgende Aufgabe:
> Zeige, dass die Seitenhalbierenden eines gleichschenkligen
> Dreiecks Höhen sind (natürlich mit Hilfe des
> Skalarproduktes usw.)
> Ich verstehe nun gar nicht wie ich das beweisen soll und
> welche Regeln ich überhaupt bei einem solchen Aufgabentyp
> beachten muss..
Stell' dir ein Dreieck mit den Ecken A, B und C vor, also den Ortsvektoren [mm] $\vec{a}=\vektor{a_1\\a_2\\a_3}$, [/mm] ...
mit der Nebenbedingung, dass |AC| = |BC| gilt.
Berechne mit diesen Angaben den Vektor der Seitenhalbierenden und weise (mit Vektorrechnung!) nach, dass dieser Vektor jeweils zu dem zugehörigen Seitenvektor orthogonal ist, etwa so:
[mm] $(\vec{b}-\vec{a}) \* (\overrightarrow{CA} [/mm] + [mm] \bruch{1}{2}\overrightarrow{AB})=0$
[/mm]
|
|
|
|