www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Vektoren" - Verständnisfrage: Lotvektor!?!
Verständnisfrage: Lotvektor!?! < Vektoren < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Verständnisfrage: Lotvektor!?!: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:43 Mo 13.05.2013
Autor: lucy.mg

Aufgabe
Was versteht man unter einem Lotvektor?

Hey Leute

kann mir jemand bitte, wenns geht so gut wie möglich nachvollziehbar und einfach erklären, was man unter einem Lotvektor versteht?!?!

Unter meinem """heiss geliebten""" Freund Wikipedia hab ich leider keine gute Erklärung gefunden.

Wäre super, wenn´s mir jemand in seinen eigenen Worten erklären könnte.

Würd mich freuen wenn jemand von euch eine Internetseite kennt, auf der so ein Lotvektor gut erkennbar dargestellt ist und mir dann den Link schickt.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Danke für eure Hilfe

        
Bezug
Verständnisfrage: Lotvektor!?!: Antwort
Status: (Antwort) fertig Status 
Datum: 18:47 Mo 13.05.2013
Autor: Diophant

Hallo,

ein Lot in der Mathematik ist eine Strecke oder Gerade, die auf irgendetwas anderem senkrecht steht. In der Vektorgeometrie ist ein Lotvektor ein Vektor, der auf einer Geraden oder einer Ebene senkrecht steht und dann mit diesen insbesondere einen rechten Winkel bildet.

Das Wort lotrecht wird ja durchaus auch im Alltag für senkrecht verwendet.


Gruß, Diophant

Bezug
                
Bezug
Verständnisfrage: Lotvektor!?!: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:45 Di 14.05.2013
Autor: lucy.mg

Hallo Diophant,

danke für diese gute knappe Erklärung.

Sind meine Beispiele zu deiner Erklärung richtig?

Angenommen mein Bleistift ist ein Vektor. Und der Tisch stellt meinetwegen die Ebene dar. Jetzt stell ich den Stift einfach auf den Tisch(die Bleistiftspitze zeigt logischer Weise nach oben). Dabei beträgt der Winkel zwischen der Tischebene und dem Bleistift 90°.

Bei dem anderen Fall läufts ganz genauso ab, außer dass es nicht auf einer (Tisch)Ebene steht sondern auf einer Geraden.

Bingo ?



Bezug
                        
Bezug
Verständnisfrage: Lotvektor!?!: Antwort
Status: (Antwort) fertig Status 
Datum: 11:23 Di 14.05.2013
Autor: Al-Chwarizmi


> Hallo Diophant,
>  
> danke für diese gute knappe Erklärung.
>  
> Sind meine Beispiele zu deiner Erklärung richtig?
>  
> Angenommen mein Bleistift ist ein Vektor. Und der Tisch
> stellt meinetwegen die Ebene dar. Jetzt stell ich den Stift
> einfach auf den Tisch(die Bleistiftspitze zeigt logischer
> Weise nach oben). Dabei beträgt der Winkel zwischen der
> Tischebene und dem Bleistift 90°.

Du könntest aber den Bleistift auch an die Unterseite
der Tischfläche kleben, so dass er nach unten zeigt.
Auch dann stellt er einen Normalvektor (bzw. Lotvektor)
der Tischebene dar. Außerdem ist die Länge des Blei-
stifts (bzw. Normalenvektors) frei wählbar (natürlich
nicht Länge Null).
Oft verlangt man dann aber in diesem Zusammen-
hang einen Normalen-Einheitsvektor (mit normiertem
Betrag Eins).

  

> Bei dem anderen Fall läufts ganz genauso ab, außer dass
> es nicht auf einer (Tisch)Ebene steht sondern auf einer
> Geraden.

Beachte aber dann z.B., dass eine Gerade im (3D-) Raum
in einem ihrer Punkte Normalenvektoren in (unendlich)
vielen verschiedenen Richtungen erlaubt !

> Bingo ?

  
Bongo Jumbo Bongo    ;-)


Bezug
                                
Bezug
Verständnisfrage: Lotvektor!?!: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:41 Di 14.05.2013
Autor: lucy.mg

Super und vielen Dank für die Antwort!

Jetzt muss ich aber noch eines Fragen:

Jetzt ist hier ja die Rede von Orthogonalität...Dabei fällt mir auch der Begriff Skalarprodukt ein.
Jetzt hab ich Skalaprodukt so interpretiert, dass wenn man zwei Vektoren mit einander multipliziert und beim Ergebnis eine Null rauskommt, heisst das dass die Vektoren zueinander orthogonal sind.

Jetzt muss ich aber nur aufpassen, dass ich den Normalenvektor mit dem Skalarprodukt nicht vertausche.

Lieber wieder nachfragen, ob ich den Unterschied richtig verstanden habe ;-)

Beim Skalarprodukt ist nur die Rede von zwei Vektoren  im Gegensatz zu einem Lotvektor, in dem es um Orthogonalität zwischen Ebene bzw. Gerade zu einem Vektor geht.  Ebene bzw. Gerade zu einem Vektor geht.

Bezug
                                        
Bezug
Verständnisfrage: Lotvektor!?!: Antwort
Status: (Antwort) fertig Status 
Datum: 11:51 Di 14.05.2013
Autor: Al-Chwarizmi


> Super und vielen Dank für die Antwort!
>  
> Jetzt muss ich aber noch eines fragen:
>  
> Jetzt ist hier ja die Rede von Orthogonalität...Dabei
> fällt mir auch der Begriff Skalarprodukt ein.
> Jetzt hab ich Skalaprodukt so interpretiert, dass wenn man
> zwei Vektoren mit einander multipliziert und beim Ergebnis
> eine Null rauskommt, heisst das dass die Vektoren
> zueinander orthogonal sind.    [ok]

Korrekt - mit einer kleinen, aber wichtigen Ausnahme:
das Skalarprodukt wird auch dann gleich 0 , wenn einer
der beteiligten Vektoren der Nullvektor ist. In diesem
Fall kann man dann aber nicht mehr von Orthogonalität
sprechen, da der Nullvektor gar keine Richtung hat und
also auch keinen Winkel festlegen kann.
  

> Jetzt muss ich aber nur aufpassen, dass ich den
> Normalenvektor mit dem Skalarprodukt nicht vertausche.
>  
> Lieber wieder nachfragen, ob ich den Unterschied richtig
> verstanden habe ;-)

> Beim Skalarprodukt ist nur die Rede von zwei Vektoren  im
> Gegensatz zu einem Lotvektor, in dem es um Orthogonalität
> zwischen Ebene bzw. Gerade zu einem Vektor geht.  Ebene
> bzw. Gerade zu einem Vektor geht.

Ja. Ein Normalenvektor ist ein Vektor, und das Skalar-
produkt ist eine Operation für jeweils 2 beteiligte Vektoren.
  
LG ,   Al-Chw.




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Vektoren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.mathebank.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]