Vollständig gekürzter Bruch < Induktion < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Zeigen Sie per Induktion, dass für k [mm] \in \IN [/mm] mit 0 und n [mm] \in \IN [/mm] gewisse k' [mm] \in \IN [/mm] mit 0 und n' [mm] \in \IN [/mm] existieren mit:
[mm] \bruch{k}{n} [/mm] = [mm] \bruch{k'}{n'} [/mm] und so dass k' oder n' ungerade ist.
Sie dürfen verwenden, dass jede natürliche Zahl gerade oder ungerade ist. |
Hallo zusammen,
ich hänge momentan an einer Teilaufgabe.
Wenn ich die Aufgabe richtig verstehe, soll ich zeigen, dass wenn ein Bruch vollständig gekürzt ist, mindestens einer der beiden Zahlen ungerade sein muss, da der Bruch ja ansonsten wieder zu kürzen wäre.
Jetzt soll ich dies ja mit Induktion beweisen. Stellt sich erstmal die wichtigste Frage: Ist nun das n nachdem ich die Induktion mache auch verbunden mit dem n' oder ist es einfach nur so benannt?
Also konkret, ob ich zum beispiel direkt beim Induktionsanfang n = 1 nur für die linke Seite der Gleichung einsetzen muss, oder auch für das n'?
Allerdings habe ich beide Möglichkeiten mal versucht und komme dann auch nicht mehr wirklich weiter. Ich finde es irgendwie verwirrend, dass man von den ursprünglichen k und n, gar nicht wirklich etwas weiß im Bezug auf gerade/ungerade.
Wäre über jede Hilfe sehr dankbar:)
Liebe Grüße
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:26 Sa 07.11.2015 | Autor: | hippias |
Es ist keine schlechte Idee Induktion nach $n$ durchzufuehren. Statt $k'$ und $n'$ kannst Du irgendwelche anderen Bezeichnungen waehlen: ich benutze $a$ und $b$.
Behauptung: Seien [mm] $k,n\in \IN$. [/mm] Dann gibt es [mm] $a,b\in \IN$ [/mm] mit folgenden Eigenschaften:
1. [mm] \frac{k}{n}= \frac{a}{b}$
[/mm]
2. $a$ und $b$ sind nicht beide gerade.
Beweis. Induktion nach $n$.
Induktionsanfang: Sei $n=1$. Da $n$ ungerade ist, kannst Du [mm] $a=\ldots$ [/mm] und $b= [mm] \ldots$ [/mm] waehlen.
Induktionsschritt: (Ich waehle hier eine Variante, die mir fuer Dein Problem besonders geeignet erscheint) Sei $n>1$ und es sei die Behauptung bewiesen fuer alle $m<n$.
Fallunterscheidung:
1. Sind $k$ oder $n$ ungerade, so verfahre wie im Induktionsanfang.
2. Sind $k$ und $n$ beide gerade, so gibt es [mm] $l,m\in \IN$ [/mm] mit $k=2l$ und $n= 2m$. Dann ist [mm] $\ldots= \frac{l}{m}$. [/mm] Wende die Induktionsvoraussetzung an.
Zusatzfrage fuer den Extrapunkt: An wecher Stelle wurde eigentlich benutzt, dass jede natuerliche Zahl gerade oder ungerade ist?
|
|
|
|
|
Erst einmal vielen Dank für deine Antwort.
Der Induktionsanfang sollte mir nun klar sein, da man ja a =k und b=1 wählen kann und so mindestens b ungerade ist..
Ich kenne dieses Verfahren der Induktion gar nicht. Würde es hier auch mit dem 'normalen' Prinzip á n -> n+1 funktionieren?
Wenn n aus den natürlichen Zahlen sein soll und man beim IA n =1 testet und dann beim Schritt auf n >1 ausweitet ist doch eigentlich klar dass die Behauptung für n <= 1 stimmt, da sie ja nur für eine natürliche Zahl (1) gelten soll?
Mich verwirrt ein wenig, dass du im Induktionsschritt einfach k auf 21 gesetzt hast zum Beispiel. Das hält den Beweis doch gar nicht mehr allgemein..
Ansonsten macht die Fallunterscheidung natürlich Sinn.
Kann sein, dass ich völlig auf dem Schlauch stehe aber für mich ergibt das noch nicht komplett Sinn leider..
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 17:30 Sa 07.11.2015 | Autor: | hippias |
Ich habe geschrieben [mm] $l\in \IN$ [/mm] mit $k=2l$. Das mag zwar der Zahl $21$ ähnlich sehen, bedeutet aber, dass $k$ gleich zwei mal dem Buchstaben $l$ ist.
Im Induktionsschritt wird eine Reduktion von $n+1$ auf $n$ kaum gelingen, da Du ja gegebenenfalls mit $2$ kuerzen wirst, womit Du $n+1$ nicht nur um $1$ verringern wirst.
Der Induktionsschritt muss nur gering umformuliert werden: Es sei die Behauptung richtig fuer [mm] $1,\ldots, [/mm] n$. Dann zeige, dass die Aussage auch fuer $n+1$ gilt.
Es ist nicht wichtig, dass die Richtigkeit fuer $n+1$ aus der Richtigkeit für $n$ folgt; jede Zahl [mm] $\leq [/mm] n$ tut es auch.
|
|
|
|