W-Raum < Stochastik < Hochschule < Mathe < Vorhilfe
|
Aufgabe | Es sei [mm] (\Omega,P) [/mm] ein diskreter W-Raum und B [mm] \subseteq \Omega [/mm] beliebig mit P(B)>0.
a) Zeigen Sie, dass [mm] P_B:\mathcal{P}(\Omega)\to[0,1], P_B(A):=P(A|B) [/mm] eine Wahrscheinlichkeitsverteilung auf [mm] \Omega [/mm] ist.
b) Es sei [mm] C_1,...,C_n [/mm] eine disjunkte Zerlegung von [mm] \Omega [/mm] mit [mm] P(C_j)>0 [/mm] für alle j und A [mm] \subseteq\Omega [/mm] beliebig. Zeigen Sie, dass dann
[mm] P(A|B)=\summe_{j=1}^{n}P(A|C_j\cap B)*(C_j|b) [/mm]
gilt. |
Hallo,
ich hab mal wieder ein Problem bei einer Aufgabe und wäre euch sehr dankbar, wenn ihr mir dabei helfen könnt.
Und zwar denke ich, dass man bei der a) Eigenschaften eines diskreten Wahrscheinlichkeitsraums zeigen muss, welche bei uns dieses sind:
[mm] 1.P(\Omega)=1
[/mm]
[mm] 2.P(\bigcup_{j\in I}A_j)=\summe_{j\in I}P(A_j), [/mm] für beliebige abzählbare Indexmengen I und paarweise disjunkte [mm] A_j\subseteq\Omega
[/mm]
Bei der b) denke ich soll man das so ähnlch wie bei dem Satz der totalen Wahrscheinlichkeit beweisen. Den Satz haben wir in der Vorlesung so defniert:
Sei [mm] (\Omega,P) [/mm] ein diskreter W-Raum und [mm] B_1,..,B_n\subseteq\Omega [/mm] eine disjunkte Zerlegung von [mm] \Omega [/mm] mit [mm] P(B_j)>0 [/mm] für alle [mm] j\in{1,...,n}. [/mm] Dann gilt:
P(A)= [mm] \summe_{j=1}^{n}P(A|B_j)*P(B_j)
[/mm]
für alle [mm] A\subseteq\Omega.
[/mm]
Aber leider finde ich überhaupt keinen Ansatz zu den Beweisen, ich hoffe einer von euch kann mir dabei behilflich sein.
Liebe Grüße und vielen Dank um Vorraus
Katti
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 18:00 So 25.10.2015 | Autor: | hippias |
> Es sei [mm](\Omega,P)[/mm] ein diskreter W-Raum und B [mm]\subseteq \Omega[/mm]
> beliebig mit P(B)>0.
> a) Zeigen Sie, dass [mm]P_B:\mathcal{P}(\Omega)\to[0,1], P_B(A):=P(A|B)[/mm]
> eine Wahrscheinlichkeitsverteilung auf [mm]\Omega[/mm] ist.
> b) Es sei [mm]C_1,...,C_n[/mm] eine disjunkte Zerlegung von [mm]\Omega[/mm]
> mit [mm]P(C_j)>0[/mm] für alle j und A [mm]\subseteq\Omega[/mm] beliebig.
> Zeigen Sie, dass dann
> [mm]P(A|B)=\summe_{j=1}^{n}P(A|C_j\cap B)*(C_j|b)[/mm]
> gilt.
> Hallo,
>
> ich hab mal wieder ein Problem bei einer Aufgabe und wäre
> euch sehr dankbar, wenn ihr mir dabei helfen könnt.
> Und zwar denke ich, dass man bei der a) Eigenschaften eines
> diskreten Wahrscheinlichkeitsraums zeigen muss,
Richtig
> welche bei
> uns dieses sind:
> [mm]1.P(\Omega)=1[/mm]
> [mm]2.P(\bigcup_{j\in I}A_j)=\summe_{j\in I}P(A_j),[/mm] für
> beliebige abzählbare Indexmengen I und paarweise disjunkte
> [mm]A_j\subseteq\Omega[/mm]
1. Es ist nach Definition [mm] $P_{B}(\Omega)=P(\Omega|B)$. [/mm] Nach Definition der bedingten Wahrscheinlichkeit ist [mm] $P(\Omega|B)=\ldots= [/mm] 1$.
2. Es sei $I$ abzaehlbar und [mm] $A_{i}$, $i\in [/mm] I$, paarweise disjunkt. Nach Definition ist [mm] $P_{B}(\bigcup_{j\in I}A_j)= P(\bigcup_{j\in I}A_j|B)$. [/mm] Nach Definition der bedingten Wahrscheinlichkeit ist [mm] $P(\bigcup_{j\in I}A_j|B)=\ldots$ [/mm] Beachte, dass $P$ die Eigenschaft 2. hat.
>
> Bei der b) denke ich soll man das so ähnlch wie bei dem
> Satz der totalen Wahrscheinlichkeit beweisen.
Richtig.
> Den Satz
> haben wir in der Vorlesung so defniert:
> Sei [mm](\Omega,P)[/mm] ein diskreter W-Raum und
> [mm]B_1,..,B_n\subseteq\Omega[/mm] eine disjunkte Zerlegung von
> [mm]\Omega[/mm] mit [mm]P(B_j)>0[/mm] für alle [mm]j\in{1,...,n}.[/mm] Dann gilt:
> P(A)= [mm]\summe_{j=1}^{n}P(A|B_j)*P(B_j)[/mm]
> für alle [mm]A\subseteq\Omega.[/mm]
Wende wie oben einfach die Definitionen an.
>
> Aber leider finde ich überhaupt keinen Ansatz zu den
> Beweisen, ich hoffe einer von euch kann mir dabei
> behilflich sein.
>
> Liebe Grüße und vielen Dank um Vorraus
>
> Katti
>
>
|
|
|
|