Wahrscheinlichkeitsberechnung < Kombinatorik < Stochastik < Hochschule < Mathe < Vorhilfe
|
Aufgabe 1 | Wie groß ist die Wahrscheinlichkeit, dass beim Lotto 6 aus 49 vier gerade und zwei ungerade Zahlen gezogen werden? |
Aufgabe 2 | Wie groß ist die Wahrscheinlichkeit, dass beim Lotto 6 aus 49 nur ungerade Zahlen gezogen werden? |
Aufgabe 3 | Ein Würfel wird 8 mal gewürfelt. Wie groß ist die Wahrscheinlichkeit, dass jede der Zahlen $1, [mm] \ldots, [/mm] 6$ mindestens einmal vorkommt? |
Hallo liebes Matheforum,
ich hab bei Kombinatorik immer so schnell einen Knoten im Kopf, dass ich mich über Eure Meinung zu meinem Lösungsweg sehr freuen würde. Falls die Antworten komplett falsch sind, wäre ein Tip in die richtige Richtung toll - Danke.
Zu Aufgabe 1)
[mm] \frac{24}{49} \cdot \frac{23}{48} \cdot \frac{22}{47} \cdot \frac{21}{46} \cdot \frac{25}{45} \cdot \frac{24}{44} [/mm] = [mm] \frac{5}{329}
[/mm]
Idee: Es gibt 24 gerade Zahlen und 25 ungerade zahlen. Die Wahrscheinlichkeit, dass die ersten vier Zahlen gerade und die letzten beiden ungerade sind ist [mm] \frac{5}{329}. [/mm] Ich glaube ich muss in diesem Fall auch die Reihenfolge berücksichtigen, es gibt 15 Möglichkeiten:
gggguu <- letzte fest und ungerade -> 5 Möglichkeiten für anderes u
ggguug <- selbes Spiel -> 4 Möglichkeiten für anderes u
...
5+4+3+2+1 = 15.
Ist meine Wahrscheinlichkeit also:
[mm] \frac{5}{329} \cdot \frac{15}{1} [/mm] = [mm] \frac{75}{329}?
[/mm]
(Ich fühl mich echt so unendlich blöd :), danke für eure Hilfe.
Zu Aufgabe 2)
Mein Gedankengang ist derselbe, nur gibt es für uuuuuu nur eine Reihenfolge:
[mm] \frac{25}{49} \cdot \frac{24}{48} \cdot \frac{23}{47}\cdot \frac{22}{46}\cdot \frac{21}{45}\cdot \frac{20}{44} [/mm] = [mm] \frac{25}{1974}
[/mm]
Zu Aufgabe 3)
Hier komme ich nicht weiter. Ich wüsste nur, wie ich das für 6 Würfe berechne:
[mm] \frac{6}{6}\cdot \frac{5}{6}\cdot \frac{4}{6}\cdot \frac{3}{6}\cdot \frac{2}{6}\cdot \frac{1}{6}
[/mm]
Aber jetzt sind ja die letzten 2 Würfe egal. Eigentlich lege ich aber doch die Augen immer wieder "zurück". Die Wahrscheinlichkeit, dass ein Augenpaar zweimal vorkommt ist ja
[mm] \frac{1}{6} \cdot \frac{1}{6}
[/mm]
Nur wie bekomme ich das da unter? Mit acht Würfen habe ich ja immer mindestens zwei Augenpaare doppelt (sofern ich eben 6 unterschiedliche in jedem Fall habe).
Tausend Dank für Tipps :)
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 13:01 Di 03.05.2016 | Autor: | M.Rex |
Hallo
> Wie groß ist die Wahrscheinlichkeit, dass beim Lotto 6 aus
> 49 vier gerade und zwei ungerade Zahlen gezogen werden?
> Wie groß ist die Wahrscheinlichkeit, dass beim Lotto 6
> aus 49 nur ungerade Zahlen gezogen werden?
> Ein Würfel wird 8 mal gewürfelt. Wie groß ist die
> Wahrscheinlichkeit, dass jede der Zahlen [mm]1, \ldots, 6[/mm]
> mindestens einmal vorkommt?
> Hallo liebes Matheforum,
>
> ich hab bei Kombinatorik immer so schnell einen Knoten im
> Kopf, dass ich mich über Eure Meinung zu meinem
> Lösungsweg sehr freuen würde. Falls die Antworten
> komplett falsch sind, wäre ein Tip in die richtige
> Richtung toll - Danke.
>
> Zu Aufgabe 1)
>
> [mm]\frac{24}{49} \cdot \frac{23}{48} \cdot \frac{22}{47} \cdot \frac{21}{46} \cdot \frac{25}{45} \cdot \frac{24}{44}[/mm]
> = [mm]\frac{5}{329}[/mm]
>
> Idee: Es gibt 24 gerade Zahlen und 25 ungerade zahlen. Die
> Wahrscheinlichkeit, dass die ersten vier Zahlen gerade und
> die letzten beiden ungerade sind ist [mm]\frac{5}{329}.[/mm] Ich
> glaube ich muss in diesem Fall auch die Reihenfolge
> berücksichtigen, es gibt 15 Möglichkeiten:
> gggguu <- letzte fest und ungerade -> 5 Möglichkeiten
> für anderes u
> ggguug <- selbes Spiel -> 4 Möglichkeiten für anderes u
> ...
> 5+4+3+2+1 = 15.
> Ist meine Wahrscheinlichkeit also:
> [mm]\frac{5}{329} \cdot \frac{15}{1}[/mm] = [mm]\frac{75}{329}?[/mm]
> (Ich fühl mich echt so unendlich blöd :), danke für
> eure Hilfe.
Aufgabenteile a) und b) sind korrekt, auch wenn du die die 15 Möglichkeiten in Aufgabenteil a) sehr verwirrend hergeleitet hast.
Besser wäre es hier, den Binomialkoeffizienten zu nutzen. Die 2 ungeraden Kugeln in den 6 gezogenen Kugeln können auf [mm] {6\choose2}=15 [/mm] verschiedenen Arten angeordnet werden.
>
> Zu Aufgabe 2)
> Mein Gedankengang ist derselbe, nur gibt es für uuuuuu
> nur eine Reihenfolge:
> [mm]\frac{25}{49} \cdot \frac{24}{48} \cdot \frac{23}{47}\cdot \frac{22}{46}\cdot \frac{21}{45}\cdot \frac{20}{44}[/mm]
> = [mm]\frac{25}{1974}[/mm]
>
> Zu Aufgabe 3)
> Hier komme ich nicht weiter. Ich wüsste nur, wie ich das
> für 6 Würfe berechne:
> [mm]\frac{6}{6}\cdot \frac{5}{6}\cdot \frac{4}{6}\cdot \frac{3}{6}\cdot \frac{2}{6}\cdot \frac{1}{6}[/mm]
>
> Aber jetzt sind ja die letzten 2 Würfe egal. Eigentlich
> lege ich aber doch die Augen immer wieder "zurück". Die
> Wahrscheinlichkeit, dass ein Augenpaar zweimal vorkommt ist
> ja
> [mm]\frac{1}{6} \cdot \frac{1}{6}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)
> Nur wie bekomme ich das da
> unter? Mit acht Würfen habe ich ja immer mindestens zwei
> Augenpaare doppelt (sofern ich eben 6 unterschiedliche in
> jedem Fall habe).
>
> Tausend Dank für Tipps :)
Mach es dir hier mal per "Notation" klar.
Du hast die festen Zahlen 1,2,3,4,5 und 6 sowie 2 Würfe, die dann egal (e) sind.
Also hast du folgende Kombination zu würfeln:
1,2,3,4,5,6,e,e
In der Wahrscheinlichkeit also \left(\frac[1}{6}\right)^{6}\cdot1^{2}
Nun musst du dir nur noch Gedanken machen, auf wie viele Anordungen du die "Kette" 1,2,3,4,5,6,e,e sortieren kannst.
Marius
|
|
|
|
|
Oh das war sehr Hilfreich, der Binomialkoeffizient! Danke schön!
Nachtrag zu Aufgabe 3)
[mm] \frac{1}{6}^6 \cdot \binom{8}{2}
[/mm]
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 14:14 Di 03.05.2016 | Autor: | M.Rex |
Hallo
> Oh das war sehr Hilfreich, der Binomialkoeffizient!
> Danke schön!
Kein Ding
>
> Nachtrag zu Aufgabe 3)
> [mm]\frac{1}{6}^6 \cdot \binom{8}{2}[/mm]
>
>
Meiner Meinung musst du die "Kettenwahrschenlichkeit" mit 8! malnehmen, denn auch die Zahlen 1,2,3,4,5 und 6 können an beliebigen Punkten in den 8 Würfen auftauchen.
Marius
|
|
|
|