www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Analysis des R1" - Was bedeutet Surjektiv?
Was bedeutet Surjektiv? < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Was bedeutet Surjektiv?: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:54 Fr 08.02.2008
Autor: nahpets87

Hallo,

Angenommen ich habe eine Funktion gegeben die vom R -> [mm] R^2 [/mm] geht.
Mit: x-> (x+1, x-1)

Wie zeige ich dass diese Funktion surjektiv (oder nicht ist).

Bei uns steht nur im Script: Surjektiv: f(X) = Y, doch darunter kann ich mir nicht wirklich etwas vorstellen.

        
Bezug
Was bedeutet Surjektiv?: Antwort
Status: (Antwort) fertig Status 
Datum: 01:09 Fr 08.02.2008
Autor: schachuzipus

Hallo Stephan,

> Hallo,
>  
> Angenommen ich habe eine Funktion gegeben die vom R -> [mm]R^2[/mm]
> geht.
>  Mit: x-> (x+1, x-1)

>  
> Wie zeige ich dass diese Funktion surjektiv (oder nicht
> ist).
>  
> Bei uns steht nur im Script: Surjektiv: f(X) = Y, doch
> darunter kann ich mir nicht wirklich etwas vorstellen.

... für eine Funktion [mm] $f:X\to [/mm] Y$

Das bedeutet, dass das Bild unter f, also $f(X)$ die gesamte Menge $Y$ umfasst, mit anderen Worten:

Jedes [mm] $y\in [/mm] Y$ muss von einem [mm] $x\in [/mm] X$ getroffen werden, oder mathematischer:

[mm] $\forall y\in [/mm] Y \ [mm] \exists x\in [/mm] X: f(x)=y$

Bei deiner Funktion [mm] $f:\IR\to\IR^2$ [/mm] musst du also für den Surjektivitätsnachweis prüfen, ob auch wirklich jedes Paar [mm] $(y_1,y_2)\in\IR^2$ [/mm] von einem [mm] $x\in\IR$ [/mm] getroffen wird, mathematischer:

[mm] $\forall (y_1,y_2)\in [/mm] Y \ [mm] \exists x\in [/mm] X: [mm] f(x)=(y_1,y_2)$ [/mm]


Bzw. für eine evtl. Widerlegung der Surjektivität musst du (mind.) ein Paar [mm] $(y_1,y_2)\in\IR^2$ [/mm] finden und angeben, das von keinem [mm] $x\in\IR$ [/mm] getroffen wird, mathematisch gesagt:

f nicht surjektiv, falls [mm] $\exists (y_1,y_2)\in\IR^2 \forall x\in\IR:f(x)\neq (y_1,y_2)$ [/mm]


Lass die Abbildung ein bisschen auf dich wirken und schaue mal, ob ein paar elementare Gitterpunkte im [mm] \IR^2 [/mm] getroffen werden...


Gruß

schachuzipus


Bezug
        
Bezug
Was bedeutet Surjektiv?: Antwort
Status: (Antwort) fertig Status 
Datum: 01:57 Fr 08.02.2008
Autor: Marcel

Hallo,

Schachuzipus hat Dir ja nun schön erklärt, was die Surjektivität bedeutet. Das ganze mal an einem Beispiel:
Betrachtest Du $f: [mm] D_f=\IR \to \IR=Z_f$ [/mm] mit $f(x)=|x|$, so ist $f$ nicht surjektiv. Denn:
$-1 [mm] \in \IR=Z_f$, [/mm] aber es gibt kein $x [mm] \in \IR=D_f$ [/mm] mit $f(x)=-1$.
(Denn:
Für alle $x [mm] \in \IR=D_f$ [/mm] gilt: $f(x)=|x| [mm] \ge [/mm] 0 > -1$, also $f(x) > -1$, was insbesondere $f(x) [mm] \not=-1$ [/mm] beinhaltet.)

Betrachten wir andererseits $g: [mm] D_g=\IR \to [0,\infty)=Z_g$ [/mm] mit $g(x)=|x|$, so ist $g$ surjektiv. Ist nämlich $y [mm] \in Z_g$ [/mm] beliebig, so ist [mm] $g^{-1}(\{y\})=\{\pm y\}$. [/mm]

(Eine andere mathematische Formulierung der Surjektivität neben denen, die Du bisher kennengelernt hast:
$f: X [mm] \to [/mm] Y$ heißt surjektiv genau dann, wenn für alle $y [mm] \in [/mm] Y$ gilt, dass [mm] $f^{-1}(\{y\}) \not=\emptyset$.) [/mm]

Setzen wir also $x:=y$, so ist $x [mm] \in [0,\infty) \subset \IR$, [/mm] also insbesondere $x [mm] \in \IR=D_g$ [/mm] und es gilt:
$f(x)=f(y)=|y|=y$

Und jetzt zu Deiner Aufgabe:
$f: [mm] \IR \to \IR^2$ [/mm] mit $f(x):=(x+1,x-1)$. Wäre $f$ surjektiv, so müßte es zu jedem $(r,s) [mm] \in \IR^2$ [/mm] ein $x [mm] \in \IR$ [/mm] geben, so dass folgte:
$f(x)=(x+1,x-1)=(r,s)$

Daraus folgen zwei Gleichungen für $x$, wenn $(r,s) [mm] \in \IR^2$ [/mm] beliebig, aber fest ist:
(i) $x+1=r$ und (ii) $x-1=s$

Jetzt ist die Frage:
Sind diese beiden Gleichungen für jedes Paar $(r,s) [mm] \in \IR^2$ [/mm] beide gleichzeitig lösbar? Also:
Gibt es zu jedem Paar $(r,s) [mm] \in \IR^2$ [/mm] (mindestens) ein $x [mm] \in \IR$, [/mm] so dass (i) und (ii) für dieses $x$ beide gleichzeitig erfüllt sind?

Wenn Dir nichts weiter einfällt:
Wie sieht es denn speziell für $(r,s)=(0,0)$ aus?

Gruß,
Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.mathebank.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]