www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "HochschulPhysik" - Wellenfunktion
Wellenfunktion < HochschulPhysik < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Wellenfunktion: Idee
Status: (Frage) überfällig Status 
Datum: 20:32 So 03.05.2009
Autor: Adri_an

Aufgabe
Gegeben sei das eindimensionale Gaußsche-Wellenpaket
[mm]\Psi(x,t)=N\displaystyle\int\limits_{-\infty}^{+\infty}\exp(\diplaystyle\frac{-(k-k_0)^2}{a^2})\exp(i(kx-\omega(k)t))\ dk[/mm] mit [mm]\omega(k)=\displaystyle\frac{\hbar k^2}{2m}[/mm].
Berechnen Sie die Wellenfunktion [mm]\Psi(x,t)[/mm] und die Normierungskonstante N.

Mein Ansatz:
[mm]\displaystyle\frac{1}{N}\Psi(x,t)=\displaystyle\int\limits_{-\infty}^{+\infty}\exp(\displaystyle\frac{-(k-k_0)^2}{a^2})\exp(i(kx-\red{\omega(k)}t))\ dk[/mm]

[mm]=\displaystyle\int\limits_{-\infty}^{+\infty}\exp(\displaystyle\frac{-(k-k_0)^2}{a^2}+i(kx-\frac{\red{\hbar k^2}t}{\red{2m}}))\ dk[/mm]

[mm]=\displaystyle\int\limits_{-\infty}^{+\infty}\exp((\displaystyle-\frac{i\hbar t}{2m}-\diplaystyle\frac{1}{a^2})k^2+(\displaystyle\frac{2k_0}{a^2}+ix)k+\displaystyle(\frac{-k_0^2}{a^2}))\ dk[/mm]

Nun habe ich folgendes gesetzt:

[mm]A:=\displaystyle(-\frac{i\hbar t}{2m}-\displaystyle\frac{1}{a^2})[/mm]

[mm]B:=\displaystyle(\frac{2k_0}{a^2}+ix)[/mm]

[mm]C:=\displaystyle(\frac{-k_0^2}{a^2})[/mm].

Nach quadratischer Ergänzung des Exponenten, bin ich auf folgenden Ausdruck gekommen:

[mm]=\exp(\displaystyle\frac{4AC-B^2}{4A})\displaystyle\int\limits_{-\infty}^{+\infty}\exp(A(k+\displaystyle\frac{B}{2A})^2)\ dk[/mm].

Hier komme ich nicht mehr weiter.





        
Bezug
Wellenfunktion: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 03:21 Mo 04.05.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "HochschulPhysik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.mathebank.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]