www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Finanzmathematik" - Zinseszinsrechnung
Zinseszinsrechnung < Finanzmathematik < Finanz+Versicherung < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Zinseszinsrechnung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:27 So 24.03.2013
Autor: Quaeck

Aufgabe
Der effektive Jahreszins beträgt 15,8354 % (bei einer stetigen Verzinsung). Bestimmen Sie den zugrunde gelegten Jahreszinssatz.

[mm] Z^\*_{eff}=15,8354 [/mm] %
[mm] Z^\*_{eff}=(e^\bruch{z}{100}-1)*100 [/mm]

[mm] \gdw 15,8354=(e^\bruch{z}{100}-1)*100 [/mm]
[mm] \gdw 0,158354=e^\bruch{z}{100}-1 [/mm]
[mm] \gdw 1,158354=e^\bruch{z}{100} [/mm]
[mm] \gdw \bruch{z}{100}=\bruch{(ln 1,158354)}{(ln e)} [/mm]

An dieser Stelle komme ich leider nicht weiter.
Mein Taschenrechner kann den Logarithmus von e nicht bilden..

Könnte mir hier vllt. jemand ne kleine Hilfestellung geben?
Danke im voraus!

        
Bezug
Zinseszinsrechnung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:42 So 24.03.2013
Autor: angela.h.b.


> Der effektive Jahreszins beträgt 15,8354 % (bei einer
> stetigen Verzinsung). Bestimmen Sie den zugrunde gelegten
> Jahreszinssatz.
>  [mm]Z^\*_{eff}=15,8354[/mm] %
>  [mm]Z^\*_{eff}=(e^\bruch{z}{100}-1)*100[/mm]
>  
> [mm]\gdw 15,8354=(e^\bruch{z}{100}-1)*100[/mm]
>  [mm]\gdw 0,158354=e^\bruch{z}{100}-1[/mm]
>  
> [mm]\gdw 1,158354=e^\bruch{z}{100}[/mm]
>  [mm]\gdw \bruch{z}{100}=\bruch{(ln 1,158354)}{(ln e)}[/mm]
>  
> An dieser Stelle komme ich leider nicht weiter.
>  Mein Taschenrechner kann den Logarithmus von e nicht
> bilden..

Hallo,

ziemlich dumm ist Dein Taschenrechner...
Macht aber nichts, denn wir helfen ihm:
ln(e)=1, denn ln steht ja normalerweise für den natürlichen Logarithmus, und es ist nunmal [mm] e^1=e. [/mm]

Aber mal abgesehen davon, bist Du doch mit der Zeile

> $ [mm] 1,158354=e^\bruch{z}{100}$ [/mm]

schon so gut wie am Ziel:
logarithmieren mit dem nat. Logarithmus ergibt

[mm] ln(1.58354)=\bruch{z}{100}, [/mm]
also ist
z=100*ln(1.58354).


Falls Du jedoch nicht den natürlichen Logarithmus verwendest, sondern den Zehnerlogarithmus, hast Du

> $ [mm] 1,158354=e^\bruch{z}{100}$. [/mm]

Logarithmieren ergibt
[mm] log(1.158354)=log(e^\bruch{z}{100})=\bruch{z}{100}*log(e), [/mm]
und damit dann im Prinzip das, was Du zuvor schriebst.
Ich kann mir aber gar nicht vorstellen, daß Dein Rechner log(e) nicht kennt. Es ist [mm] log(e)\approx [/mm] 0.43.

LG Angela




>  
> Könnte mir hier vllt. jemand ne kleine Hilfestellung
> geben?
>  Danke im voraus!


Bezug
                
Bezug
Zinseszinsrechnung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:20 So 24.03.2013
Autor: Quaeck

Hallo Angela,

Nachdem ich deine Antwort gelesen habe, habe ich festgestellt, dass ich immer ln [mm] e^x [/mm] eingetippt hatte..

Danke, dass du dir die Zeit genommen hast und vielen Dank für deine Hilfe!

Schöne Grüße! :)


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Finanzmathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.mathebank.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]