www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Sonstiges" - Äquivalenzrelation
Äquivalenzrelation < Sonstiges < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Äquivalenzrelation: Idee
Status: (Frage) beantwortet Status 
Datum: 23:30 Do 18.10.2007
Autor: Petite

Aufgabe
Auf der Menge [mm] $M\not=\emptyset$ [/mm] ist die Äquivalenzrelation [mm] $R\not=M\times [/mm] M$ definiert. Für [mm] $x\in [/mm] M$ bezeichne $[x]$ die zu gehörige Äquivalenzklasse.
Bestimmen Sie [mm] $\bigcup_{x\in M}[x]$ [/mm] und [mm] $\bigcap_{x\in M}[x]$. [/mm]

Hmm, mir fehlt irgendwie total der Ansatz. Ich weiß, dass die Äquivalenzrelation eine reflexive, symmetrische un transitive Funktion ist und dass [x]=[y] oder [mm] [x]\cap[y]=\emptyset. [/mm]
Was mich am meisten irritiert ist das [mm] R\not=M\timesM. [/mm]

Danke für jegliche Idee. Ich seh leider im Moment absolut nix.

        
Bezug
Äquivalenzrelation: Antwort
Status: (Antwort) fertig Status 
Datum: 23:44 Do 18.10.2007
Autor: koepper

Hallo,

lies doch bitte die Aufgabenstellung noch einmal ganz genau und schreib sie so ins Forum, wie sie dort steht, ganz exakt.

Eine Äquivalenzrelation auf einer Menge M ist keine Funktion, sondern eine Teilmenge von $M [mm] \times [/mm] M$, mit 3 besonderen Eigenschaften (die du genannt hast).
Demzufolge kann dort sinnvollerweise nur stehen $R [mm] \neq [/mm] M [mm] \times [/mm] M$.

Aber ungeachtet dessen:

Wegen der Reflexivität ist jedes Element von M in genau einer Äquivalenzklasse enthalten. Was ist also sicher die Vereinigung aller Äquivalenzklassen?

Wie du selbst geschrieben hast, sind zwei verschiedene Äquivalenzklassen immer disjunkt. Was ist also sicher der Durchschnitt aller Äquivalenzklassen?
Hier würde übrigens auch die Voraussetzung $R [mm] \neq [/mm] M [mm] \times [/mm] M$ Sinn machen. Sie stellt nämlich sicher, daß es mindestens 2 Äquivalenzklassen überhaupt gibt.

Gruß
Will



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.mathebank.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]