beweis: relation < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
hallo,
ich hänge an folgender aufgabe fest.keine ahnung wie ich die angehen soll:
sei p [mm] \in [/mm] N eine primzahl und [mm] \IF_{p}:=\IZ/p\IZ [/mm] der körper, der restklassen modulo p. ferner sei [mm] \IF_{p}hoch [/mm] n:= [mm] \IF_{p} [/mm] x ... x [mm] \IF_{p} [/mm] das n-fache kartesische produkt von [mm] \IF_{p}
[/mm]
1. zeigen sie,dass die folgende relation eine äquivalenzrelation zu [mm] \IF_{p}hoch [/mm] n [mm] \backslash [/mm] {0} definiert
x [mm] \sim [/mm] y [mm] :\gdw [/mm] es existiert ein [mm] \lambda \in \IF_{3} \backslash [/mm] {0} mit x= [mm] \lambda [/mm] y
2.
bestimmen sie die anzahl der äquivalenzklassen für die obige äquivalenzrelation
also schonmal danke für die hilfe
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 12:04 Sa 04.11.2006 | Autor: | jbulling |
Hallo rr,
das sind ja merkwürdige Aufgaben, die Du da gestellt bekommst.
Stimmt Deine Angabe hier:
$ [mm] \lambda \in \IF_{3} \backslash \{ 0 \}$ [/mm]
oder hast Du Dich da evtl. verschrieben. Wenn sie stimmt, dann müsste meines Erachtens noch angegeben sein, wie man das Produkt
$x= [mm] \lambda [/mm] y$
betrachten soll. in [mm] \IN, [/mm] in [mm] \IF_{3}, [/mm] oder in [mm] \IF_{p^n}.
[/mm]
Wenn nichts angegeben ist, vermutlich in [mm] \IN, [/mm] oder?
Finde es echt immer erstaunlich, wie Profs, die ihre Studenten eigentlich ja zur mathematischen Strenge erziehen wollen es immer wieder schaffen, wichtige Angaben einfach weg zu lassen und somit Interpretationsspielraum entsteht :o(
Gruß
Jürgen
|
|
|
|
|
ne sorry hab mich verschreiben:
heißt:
x [mm] \sim [/mm] y : [mm] \gdw [/mm] es existiert ein [mm] \lambda \in \IF_{p} \backslash [/mm] {0} mit
x = [mm] \lambda [/mm] y
ach und Fp hoch n heißt net p hoch n sondern des n steht oben beim F und des p unten also auf gleicher linie.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:39 Sa 04.11.2006 | Autor: | piet.t |
Hallo roadrunner,
bei 1. musst Du eigentlich nur die 3 Eigenschaften einer Äquivalenzrelation nachprüfen.
Am Beispiel Symmetrie: zu zeigen ist x [mm] \sim [/mm] y [mm] \Rightarrow [/mm] y [mm] \sim [/mm] x.
Da x [mm] \sim [/mm] y gibt es ein [mm] \lambda \in \IF_p\setminus \{0\} [/mm] mit x = [mm] \lambda [/mm] y.
Multipliziert man das mit [mm] \lambda^{-1} [/mm] (beachte: [mm] \IF_p [/mm] ist ein Körper und [mm] \lambda \not= [/mm] 0), dann hat man y = [mm] \lambda^{-1}x. [/mm] Also gibt es ein [mm] \lambda' \in \IF_p [/mm] (nämlich gerade [mm] \lambda^{-1}) [/mm] so dass y = [mm] \lambda' [/mm] x und wegen der Definition von [mm] \sim [/mm] ist damit y [mm] \sim [/mm] x.
In ähnlicher Weise musst Du jetzt eben noch die Reflexivität und die Transitivität nachweisen.
Bei 2. Solltest Du Dir mal überlegen, wie viele Elemente der [mm] \IF_p^n \setminus \{0\} [/mm] eigentlich hat und wie viele in jeder Äquivalenzklasse liegen. Da die Äquivalenzklassen ja alle disjunkt sind folgt daraus direkt die Zahl der Äquivalenzklassen.
Dann mal frisch ans Werk.....
Gruß
piet
|
|
|
|
|
also des problem is,dass ich keine ahnung habe, wie man die reflexivität und die transitivität nachweist.
ich kenne zwar die definition, aber einen beweis hab ich bis jetzt noch nicht gesehen.
es hieß immer zu trivial und deswegen hat man ihn nie gemacht
reflexiv: x [mm] \sim [/mm] x => x-x = o is des nen beweis?
wie kann ich mir eigentlich überlegen wieviel elemente [mm] \IF [/mm] hat??
sind doch keine angeben.
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 19:00 Sa 04.11.2006 | Autor: | piet.t |
> also des problem is,dass ich keine ahnung habe, wie man die
> reflexivität und die transitivität nachweist.
> ich kenne zwar die definition, aber einen beweis hab ich
> bis jetzt noch nicht gesehen.
> es hieß immer zu trivial und deswegen hat man ihn nie
> gemacht
>
> reflexiv: x [mm]\sim[/mm] x => x-x = o is des nen beweis?
Nö, denn was hat der mit der Definition von [mm] \sim [/mm] zu tun?
x [mm] \sim [/mm] x bedeutet doch es gibt ein [mm] \lambda [/mm] mit x = [mm] \lambda [/mm] x. Welches?
>
> wie kann ich mir eigentlich überlegen wieviel elemente [mm]\IF[/mm]
> hat??
> sind doch keine angeben.
[mm] \IF_p [/mm] sind die Restklassen [mm] \IZ/pp\IZ [/mm] - und das ist ja bekanntlich der Körper mit p Elementen. Dann bleibt also noch die Frage, wie viele Elemente ein n-dimensionaler Vektorraum über [mm] \IF_p [/mm] hat - aber auch das kann man mit etwas nachdenken rauskriegen.
|
|
|
|
|
reflexivität:
x [mm] \sim \lambda [/mm] x => wenn [mm] \lambda [/mm] = 1 ist reflexivität erfüllt
wie kann ich jetzt die transitivität beweisen?
x [mm] \sim \lambda [/mm] y und [mm] \lambda [/mm] y [mm] \sim [/mm] z
=> x [mm] \sim [/mm] y
aber die nummer 2 bekomm ich einfach net raus.könnt mir bitte jemand dazu eine lösung schreiben??
(zeit und nerven gehen dem ende entgegen)
schonmal danke für die hilfe
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 18:20 Di 07.11.2006 | Autor: | matux |
$MATUXTEXT(ueberfaellige_frage)
|
|
|
|