www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Exp- und Log-Funktionen" - f(x)=ln(x+c) so dass f(1)=1
f(x)=ln(x+c) so dass f(1)=1 < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

f(x)=ln(x+c) so dass f(1)=1: Warum
Status: (Frage) beantwortet Status 
Datum: 16:22 Mo 08.06.2015
Autor: Gooly

Aufgabe
f(x)=ln(x+c) & f(1)=1 => c = e-1

Hallo,

für f(x)=ln(x) gilt f(1)=0.

Ich suchte jetzt eine Zahl c, mit der f(x)=ln(x+c) so dass f(1)=1 und war dann sehr verwundert, dass diese (bis auf e) 'Ganzzahl-Beziehung' gilt: f(x)=ln(x+c) mit c=e-1.

1) Warum funktioniert das so 'einfachen' mit c=e-1?
2) Ist (e-1) auch eine besondere Zahl - warum und wo?

Ist nur eine Verständnis- und Neugierfrage

        
Bezug
f(x)=ln(x+c) so dass f(1)=1: Antwort
Status: (Antwort) fertig Status 
Datum: 16:28 Mo 08.06.2015
Autor: fred97


> f(x)=ln(x+c) & f(1)=1 => c = e-1
>  Hallo,
>  
> für f(x)=ln(x) gilt f(1)=0.
>  
> Ich suchte jetzt eine Zahl c, mit der f(x)=ln(x+c) so dass
> f(1)=1 und war dann sehr verwundert, dass diese (bis auf e)
> 'Ganzzahl-Beziehung' gilt: f(x)=ln(x+c) mit c=e-1.
>  
> 1) Warum funktioniert das so 'einfachen' mit c=e-1?

Es ist f(1)=ln(1+c). c muss also der Bedingung

     (*) ln(1+c)=1

genügen.(*) ist gleichbedeutend mit 1+c=e.

FRED


>  2) Ist (e-1) auch eine besondere Zahl - warum und wo?
>  
> Ist nur eine Verständnis- und Neugierfrage


Bezug
                
Bezug
f(x)=ln(x+c) so dass f(1)=1: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:43 Mo 08.06.2015
Autor: Gooly

Ahh - ok! So wird es eh logisch!

Bezug
        
Bezug
f(x)=ln(x+c) so dass f(1)=1: Alternativ
Status: (Antwort) fertig Status 
Datum: 18:27 Mo 08.06.2015
Autor: DieAcht

Hallo Gooly!


Wir haben

      [mm] f(x):=\ln(x+c). [/mm]

Es ist

      [mm] $f(1)=1\$ [/mm]

      [mm] $\Longrightarrow\ln(1+c)=1$ [/mm]

      [mm] $\Longrightarrow e^{\ln(1+c)}=e^1$ [/mm]

      [mm] $\Longrightarrow [/mm] 1+c=e$

      [mm] $\Longleftrightarrow [/mm] c=e-1$.

(Probe: [mm] $f(1)=\ln(1+c)=\ln(1+e-1)=\ln(e)=1$.) [/mm]


Gruß
DieAcht

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.mathebank.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]