www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Zahlentheorie" - g-adische Darstellung Division
g-adische Darstellung Division < Zahlentheorie < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

g-adische Darstellung Division: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:34 Mo 18.07.2011
Autor: erisve

Aufgabe
Warum funktioniert die Division mit Rest , wenn man eine Dezimalzahl in ein andere Basis umwandeln möchte?



Hallo , ich sitze grad an meiner Bachelorarbeit.
Gerade habe ich den Satz der g-adischen Zahlen bewiesen, allerdings in der Form, dass man direkt die Faktoren erhält die vor die Potenzen kommen,
nun wollte ich erwähnen, dass sich jenes  auch durch Division mit Rest lösen lässt, aber mir fehlt die Analogie warum es geht.

Mal ein Beispiel
478= [mm] 3*5^{3}+4*5^{2}+0*5^{1}+3*5^{0} [/mm]

durch Divison mit Reste und aufschreiben der Rest kommt man auf die Zahlen vor den Potenzen:
478:5=95 R3
95:5=19 R0
19:5=3 R4
3:5=0 R3
Warum ist das so?

        
Bezug
g-adische Darstellung Division: Antwort
Status: (Antwort) fertig Status 
Datum: 11:16 Mo 18.07.2011
Autor: Nisse


> Mal ein Beispiel
> 478= [mm]3*5^{3}+4*5^{2}+0*5^{1}+3*5^{0}[/mm]
>  
> durch Divison mit Reste und aufschreiben der Rest kommt man
> auf die Zahlen vor den Potenzen:
>  478:5=95 R3
>  95:5=19 R0
>  19:5=3 R4
>  3:5=0 R3
>  Warum ist das so?

Brauchst Du eine Erklärung oder einen Beweis?

Beweis für einzelne Zahlen in [mm]\IZ[/mm]erhälst Du durch triviales Nachrechnen, zunächst die Zahl entlang dem Euklidischen Algorithmus aufteilen und dann Klammern auflösen und nach Fünfer-Potenzen sortieren:
[mm]478 = 95*5 + 3= (19*5 +0)*5 +3 =((3*5+4)*5 +0)*5 +3 = (3*5^2+4*5+0)*5+3=3*5^3+4*5^2+0*5^1 +3[/mm]

Dass das Ganze klappt liegt daran, dass [mm]\IZ[/mm] ein Euklidischer Ring ist, also die Division mit Rest eindeutig funktioniert und daher der Euklidische Algorithmus möglich ist.

Mein anschauliche Erklärung wäre, dass dir der Euklidische Algorithmus genau die richtige Zerlegung liefert, die man der Zahl 478 ersteinmal nicht ansieht.

Bezug
                
Bezug
g-adische Darstellung Division: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:28 Mo 18.07.2011
Autor: erisve

Danke, das ist natürlich schonmal sehr plausibel
und beweisen könnte ich das mit dem Eukl.Alg.?
Muss ich mir mal überlegen ob ich das noch reinbringe oder so stehen lasse


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Zahlentheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.mathebank.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]