kartesische Produkt abgeschl. < Topologie+Geometrie < Hochschule < Mathe < Vorhilfe
|
Status: |
(Frage) beantwortet | Datum: | 16:52 Fr 13.03.2015 | Autor: | sissile |
Aufgabe | [mm] A_1\subseteq\IR^k,A_2\subseteq\IR^m [/mm] seien abgeschlossen(jeweils bzgl. der euklidischen Metrik).
Behauptung: [mm] A_1 \times A_2 \subseteq \IR^k \times \IR^m [/mm] ist abgeschlossen.
Beweis:
Wir zeigen, dass [mm] U:=(\IR^k \times \IR^m)\setminus (A_1\times A_2) [/mm] offen ist.
Sei (x,y) [mm] \in [/mm] U, dann gilt x [mm] \in \IR^k\setminus A_1 [/mm] oder y [mm] \in \IR^m\setminus A_2.
[/mm]
Angenommen x [mm] \in \IR^k\setminus A_1:
[/mm]
[mm] \exists \epsilon>0:B_{\epsilon}(x) \subseteq \IR^k\setminus A_1 [/mm] und daher ist auch [mm] B_{\epsilon} [/mm] ((x,y)) [mm] \subseteq (\IR^k \times \IR^m) \setminus (A_1 \times A_2), [/mm] denn
(x',y') [mm] \in B_{\epsilon}((x,y)) \Rightarrow \epsilon^2 [/mm] > [mm] ||(x,y)-(x',y')||^2 [/mm] = [mm] ||(x,0)-(x',0)||^2 [/mm] + [mm] ||(0,y)-(0,y')||^2 \ge ||x-x'||^2 \Rightarrow [/mm] x' [mm] \not\in A_1 [/mm] |
Hallo,
Ich verstehe den Beweis in meinen Skriptum überhaupt nicht.
Warum ist (x,y) [mm] \in [/mm] U genau dann wenn gilt x [mm] \in \IR^k\setminus A_1 [/mm] oder y [mm] \in \IR^m\setminus A_2?
[/mm]
Der Beweis zu [mm] B_{\epsilon} [/mm] ((x,y)) [mm] \subseteq (\IR^k \times \IR^m) \setminus (A_1 \times A_2) [/mm] in der untersten Zeile ist mir auch etwas rätselhaft. Wieso wird überhaupt quadriert? Und wie wird hier aufgespalten?
Würde mich freuen, wenn ihr mir hier weiterhelfen könntet.
LG,
sissi
|
|
|
|
Hallo sissile,
der Geist des Beweises lässt sich auch in [mm] $\IR^2$ [/mm] nachvollziehen. Stell dir [mm] $A_1,A_2$ [/mm] als (abgeschlossene) Intervalle in [mm] $\IR$ [/mm] vor. Dann ist [mm] $A_1 \times A_2 \subset \IR^2$ [/mm] ein abgeschlossenes Rechteck.
Wenn nun ein Punkt $(x,y) [mm] \in \IR^2 \backslash (A_1 \times A_2)$ [/mm] außerhalb des Rechtecks liegt, muss er (unter oder über) dem Rechteck liegen oder (links oder rechts) vom Recheck liegen.
Das entspricht gerade der Feststellung, dass $x [mm] \in \IR \backslash A_1$ [/mm] oder $y [mm] \in \IR \backslash A_2$ [/mm] ist.
Wenn man jetzt oBdA annimmt, dass $x [mm] \in \IR \backslash A_1$, [/mm] sind wir also im Fall, dass wir uns mit $(x,y)$ links oder rechts vom Rechteck befinden.
Nehmen wir mal an, wir befinden uns links vom Rechteck. Es ist dann natürlich naheliegend, die offene Kugel um $(x,y)$ so zu wählen, dass wir rechts nicht ans Rechteck stoßen. Es ist aber klar, dass das überhaupt nichts mit der Ausdehnung der Kugel in $y$-Richtung zu tun hat, sondern es genügt allein Kenntnis über die Ausdehnung in $x$-Richtung. Daher wählt man [mm] $\varepsilon [/mm] > 0$ so dass [mm] $B_{\varepsilon}(x) \in \IR \backslash \{A_1\}$.
[/mm]
Man muss nun eben nur noch mathematisch zeigen, dass die $y$-Ausdehnung der Kugel wirklich keine Rolle spielt. Dafür zeigt man, dass [mm] $B_{\varepsilon}(x,y) \subset \IR^2 \backslash (A_1 \times A_2)$. [/mm]
> denn
> (x',y') [mm]\in B_{\epsilon}((x,y)) \Rightarrow \epsilon^2[/mm] >
> [mm]||(x,y)-(x',y')||^2[/mm] = [mm]||(x,0)-(x',0)||^2[/mm] +
> [mm]||(0,y)-(0,y')||^2 \ge ||x-x'||^2 \Rightarrow[/mm] x' [mm]\not\in A_1[/mm]
Sinn dieses Beweises ist es zu zeigen, dass
[mm] $\|(x,y)-(x',y')\| \ge \|x-x'\|$ [/mm] (*)
gilt. Das geht nur leicht, wenn man quadriert, weil man dann schön die Struktur der Norm ausnutzen kann (Wurzel hebt sich mit Quadrat weg). Im Beweis wird benutzt, dass
[mm] $\|(x,0) [/mm] - [mm] (x',0)\| [/mm] = [mm] \|x-x'\|$
[/mm]
gilt und
[mm] $\|(x,y) [/mm] - [mm] (x',y')\|^2 [/mm] = [mm] \sum_{i=1}^{n}(x_i-x_i')^2 [/mm] + [mm] \sum_{i=1}^{k}(y_i-y_i')^2 [/mm] = [mm] \|x-x'\| [/mm] + [mm] \|y-y'\|$.
[/mm]
----
Mit der Aussage (*) folgt dann schließlich, dass jeder Punkt $(x',y')$, der in [mm] $B_{\varepsilon}(x,y)$ [/mm] liegt, auch erfüllt, dass $x' [mm] \in B_{\varepsilon}(x)$. [/mm] Damit ist gezeigt, dass die $y$-Ausdehnung von der Kugel keine Rolle spielt.
Viele Grüße,
Stefan
|
|
|
|