www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Uni-Analysis-Komplexe Zahlen" - komplexer Logarithmus
komplexer Logarithmus < Komplexe Zahlen < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

komplexer Logarithmus: Korrektur
Status: (Frage) beantwortet Status 
Datum: 15:30 Sa 10.01.2015
Autor: Exel84

Aufgabe
Berechnen Sie folgende Werte. Verwenden Sie dabei den Zweig des Logarithmus im angegebenen Argumentbereich:

a) ln􏰀 [mm] (2\wurzel{3}-6j)􏰁 [/mm] für arg z [mm] \in [/mm] ] [mm] \bruch{-\pi}{4}, \bruch{7\pi}{4} [/mm] [

b) [mm] (-1+j)^{\bruch{5}{6}} [/mm] für arg z [mm] \in [/mm] ] [mm] \bruch{-\pi}{2}, \bruch{3\pi}{2} [/mm] [

c)
i) [mm] \wurzel[3]{-1} [/mm] für arg z [mm] \in [/mm] ] 0, [mm] 2\pi [/mm] [

ii) [mm] \wurzel[3]{-1} [/mm] für ] [mm] -2\pi, [/mm] 0 [

iii) [mm] \wurzel[3]{-1} [/mm] für ] [mm] 2\pi, 4\pi [/mm] [

Hallo Zusammen,

hier meine Rechnungen:

a)

[mm] |2\wurzel{3}-6j| [/mm] = [mm] \wurzel{48} [/mm] und arg [mm] (2\wurzel{3}-6j) [/mm] = -60° = [mm] \bruch{-\pi}{3} [/mm]

= [mm] \wurzel{48} [/mm] - [mm] j\bruch{5\pi}{3} [/mm]

b)

[mm] (-1+j)^{\bruch{5}{6}} [/mm] = [mm] a^{b} [/mm] = [mm] e^{b * ln a} [/mm]

= |a|= [mm] \wurzel{2}, [/mm] arg (-1) = -45° = [mm] -\bruch{\pi}{4} [/mm] = [mm] -\bruch{\pi}{4} [/mm] + [mm] \pi [/mm] = [mm] \bruch{3\pi}{4} [/mm]

= ln (a) = ln [mm] (\wurzel{2}) [/mm] + [mm] j\bruch{3\pi}{4} [/mm]

= exp [mm] (\bruch{5}{6}* [/mm] (ln [mm] (\wurzel{2}) [/mm] + [mm] j\bruch{3\pi}{4})) [/mm]

= exp [mm] (\bruch{5}{6}* [/mm] ln [mm] (\wurzel{2}) [/mm] * exp [mm] (\bruch{5}{6}* j\bruch{3\pi}{4}) [/mm]

= [mm] 2^\bruch{5}{12} [/mm] * exp [mm] (j\bruch{5\pi}{8}) [/mm]

c)

i) [mm] \wurzel[3]{-1} [/mm] für arg z [mm] \in [/mm] ] 0, [mm] 2\pi [/mm] [

= [mm] (-1)^{\bruch{1}{3}} [/mm] = [mm] j^{\bruch{1}{3}} [/mm] = [mm] e^{\bruch{1}{3}} [/mm] * ln(j)

= [mm] e^{\bruch{1}{3}} [/mm] * (j [mm] \bruch{\pi}{2} [/mm] + j [mm] \bruch{\pi}{2}) [/mm]

= [mm] e^{j\bruch{\pi}{3}} [/mm]

ii) [mm] \wurzel[3]{-1} [/mm] für ] [mm] -2\pi, [/mm] 0 [

= [mm] (-1)^{\bruch{1}{3}} [/mm] = [mm] j^{\bruch{1}{3}} [/mm] = [mm] e^{\bruch{1}{3}} [/mm] * ln(j)

= [mm] e^{\bruch{1}{3}} [/mm] * (-j [mm] \bruch{\pi}{2} [/mm] - j [mm] \bruch{\pi}{2}) [/mm]

= [mm] e^{-j\bruch{\pi}{3}} [/mm]

iii) [mm] \wurzel[3]{-1} [/mm] für ] [mm] 2\pi, 4\pi [/mm] [

= [mm] (-1)^{\bruch{1}{3}} [/mm] = [mm] j^{\bruch{1}{3}} [/mm] = [mm] e^{\bruch{1}{3}} [/mm] * ln(j)

= [mm] e^{\bruch{1}{3}} [/mm] * (j [mm] \bruch{\pi}{2} [/mm] + j [mm] \bruch{5\pi}{2}) [/mm]

= [mm] e^{j\pi} [/mm] = -1

Sind meine Rechnungen dazu richtig?

Vielen Dank im Voraus

Vg Exel84




Ps: ich habe diese Frage in keinem anderen Forum gestellt!!!

        
Bezug
komplexer Logarithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 15:52 Sa 10.01.2015
Autor: MathePower

Hallo Exel84,

> Berechnen Sie folgende Werte. Verwenden Sie dabei den Zweig
> des Logarithmus im angegebenen Argumentbereich:
>  
> a) ln􏰀 [mm](2\wurzel{3}-6j)􏰁[/mm] für arg z [mm]\in[/mm] ]
> [mm]\bruch{-\pi}{4}, \bruch{7\pi}{4}[/mm] [
>  
> b) [mm](-1+j)^{\bruch{5}{6}}[/mm] für arg z [mm]\in[/mm] ] [mm]\bruch{-\pi}{2}, \bruch{3\pi}{2}[/mm]
> [
>  
> c)
> i) [mm]\wurzel[3]{-1}[/mm] für arg z [mm]\in[/mm] ] 0, [mm]2\pi[/mm] [
>
> ii) [mm]\wurzel[3]{-1}[/mm] für ] [mm]-2\pi,[/mm] 0 [
>  
> iii) [mm]\wurzel[3]{-1}[/mm] für ] [mm]2\pi, 4\pi[/mm] [
>  Hallo Zusammen,
>  
> hier meine Rechnungen:
>  
> a)
>  
> [mm]|2\wurzel{3}-6j|[/mm] = [mm]\wurzel{48}[/mm] und arg [mm](2\wurzel{3}-6j)[/mm] =
> -60° = [mm]\bruch{-\pi}{3}[/mm]
>  
> = [mm]\wurzel{48}[/mm] - [mm]j\bruch{5\pi}{3}[/mm]
>  


Hier hat der Fehlerteufel zugeschlagen:

[mm]\wurzel{48} \blue{+} j\bruch{5\pi}{3}[/mm]


> b)
>  
> [mm](-1+j)^{\bruch{5}{6}}[/mm] = [mm]a^{b}[/mm] = [mm]e^{b * ln a}[/mm]
>  
> = |a|= [mm]\wurzel{2},[/mm] arg (-1) = -45° = [mm]-\bruch{\pi}{4}[/mm] =
> [mm]-\bruch{\pi}{4}[/mm] + [mm]\pi[/mm] = [mm]\bruch{3\pi}{4}[/mm]
>  
> = ln (a) = ln [mm](\wurzel{2})[/mm] + [mm]j\bruch{3\pi}{4}[/mm]
>  
> = exp [mm](\bruch{5}{6}*[/mm] (ln [mm](\wurzel{2})[/mm] + [mm]j\bruch{3\pi}{4}))[/mm]
>  
> = exp [mm](\bruch{5}{6}*[/mm] ln [mm](\wurzel{2})[/mm] * exp [mm](\bruch{5}{6}* j\bruch{3\pi}{4})[/mm]
>  
> = [mm]2^\bruch{5}{12}[/mm] * exp [mm](j\bruch{5\pi}{8})[/mm]
>  


[ok]


> c)
>  
> i) [mm]\wurzel[3]{-1}[/mm] für arg z [mm]\in[/mm] ] 0, [mm]2\pi[/mm] [
>  
> = [mm](-1)^{\bruch{1}{3}}[/mm] = [mm]j^{\bruch{1}{3}}[/mm] = [mm]e^{\bruch{1}{3}}[/mm]
> * ln(j)
>
> = [mm]e^{\bruch{1}{3}}[/mm] * (j [mm]\bruch{\pi}{2}[/mm] + j [mm]\bruch{\pi}{2})[/mm]
>  
> = [mm]e^{j\bruch{\pi}{3}}[/mm]
>  
> ii) [mm]\wurzel[3]{-1}[/mm] für ] [mm]-2\pi,[/mm] 0 [
>  
> = [mm](-1)^{\bruch{1}{3}}[/mm] = [mm]j^{\bruch{1}{3}}[/mm] = [mm]e^{\bruch{1}{3}}[/mm]
> * ln(j)
>  
> = [mm]e^{\bruch{1}{3}}[/mm] * (-j [mm]\bruch{\pi}{2}[/mm] - j
> [mm]\bruch{\pi}{2})[/mm]
>  
> = [mm]e^{-j\bruch{\pi}{3}}[/mm]
>  
> iii) [mm]\wurzel[3]{-1}[/mm] für ] [mm]2\pi, 4\pi[/mm] [
>  
> = [mm](-1)^{\bruch{1}{3}}[/mm] = [mm]j^{\bruch{1}{3}}[/mm] = [mm]e^{\bruch{1}{3}}[/mm]
> * ln(j)
>  
> = [mm]e^{\bruch{1}{3}}[/mm] * (j [mm]\bruch{\pi}{2}[/mm] + j
> [mm]\bruch{5\pi}{2})[/mm]
>  
> = [mm]e^{j\pi}[/mm] = -1

>


[ok]

  

> Sind meine Rechnungen dazu richtig?
>  
> Vielen Dank im Voraus
>  
> Vg Exel84
>  
>
>
>
> Ps: ich habe diese Frage in keinem anderen Forum
> gestellt!!!


Gruss
MathePower

Bezug
                
Bezug
komplexer Logarithmus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:01 Sa 10.01.2015
Autor: Exel84

hi,

erstmal vielen vielen Dank für deine schnelle Antwort.

Ich hätte da mal ne Frage zu a)

Warum hast du denn da ...+ [mm] j\bruch{5\pi}{3} [/mm] heraus?

vg

Bezug
                        
Bezug
komplexer Logarithmus: Antwort
Status: (Antwort) fertig Status 
Datum: 16:19 Sa 10.01.2015
Autor: MathePower

Hallo Exel84,

> hi,
>  
> erstmal vielen vielen Dank für deine schnelle Antwort.
>
> Ich hätte da mal ne Frage zu a)
>  
> Warum hast du denn da ...+ [mm]j\bruch{5\pi}{3}[/mm] heraus?
>  


Der Winkel [mm]-\bruch{\pi}{3}[/mm] muss auf das
Intervall [mm]\left\\]\bruch{-\pi}{4}, \bruch{7\pi}{4} \right\[[[/mm] transferiert werden.

Das ist nur möglich, wenn [mm]2\pi[/mm] hinzuaddiert werden:

[mm]\bruch{5\pi}{3}=-\bruch{\pi}{3}+2\pi[/mm]


> vg


Gruss
MathePower

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis-Komplexe Zahlen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.mathebank.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]