www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Wahrscheinlichkeitstheorie" - konvergenz zur log-normalverte
konvergenz zur log-normalverte < Wahrscheinlichkeitstheorie < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

konvergenz zur log-normalverte: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:05 Di 06.10.2009
Autor: der_emu

Hallo,

wenn eine zufallsvariable [mm] S_T [/mm] log-normalverteilt ist mit parametern [mm] \log S_0 +rT-\frac{1}{2}\sigma^2T [/mm] und [mm] \sigma\sqrt{T}, [/mm] warum folgt dann: [mm] S_T:=S_0\exp (\sigma W_T+(r-\frac{1}{2}\sigma^2)T) [/mm]
mit [mm] W_T\sim [/mm] N(0,T)?

Das ganze tritt beim beweis der Balck-scholes formel auf, wenn das von interesse ist.

vielen dank im voraus.

        
Bezug
konvergenz zur log-normalverte: Antwort
Status: (Antwort) fertig Status 
Datum: 21:20 Di 06.10.2009
Autor: luis52

Moin,

bestimme mal die Verteilung von [mm] $\log S_T$ [/mm] ...

vg Luis

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Wahrscheinlichkeitstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.mathebank.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]