www.vorhilfe.de
Vorhilfe

Kostenlose Kommunikationsplattform für gegenseitige Hilfestellungen.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
Forum "Differentiation" - linksseitig differzierbar
linksseitig differzierbar < Differentiation < Funktionen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

linksseitig differzierbar: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:03 Mi 23.04.2008
Autor: mattemonster

Aufgabe
Zeigen Sie:
f ist genau dann bei [mm] x_{0} [/mm] differenzierbar, wenn es bei [mm] x_{0} [/mm] links- und rechtsseitig differenzierbar ist und die beiden Ableitungen übereinstimmen.

Hat mir da jemand ne Idee, wie ich da rangehe?

        
Bezug
linksseitig differzierbar: Antwort
Status: (Antwort) fertig Status 
Datum: 11:20 Do 24.04.2008
Autor: koepper

Hallo,

da solltest du mal mit den Definitionen von "Differenzierbar", "linksseitig diff-bar" und "rechtsseitig diff-bar" beginnen.

LG
Will

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differentiation"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.mathebank.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]