nicht quadratische Matrix inv. < Lineare Algebra < Hochschule < Mathe < Vorhilfe
|
Hi,
scheinbar simple Frage: Wie invertiere ich nicht quadratische Matrizen?
kenn bisher nur den Fall quadratischer Matrizen.
So hab ich z.b die Matrix
[mm] \pmat{ \bruch{1}{2} & -2 & 2 & -\bruch{2}{5} \\ 1 & 2 & -1 & 0 \\ \bruch{2}{3} & 0 & -2 & 3}
[/mm]
mit Hilfe v. (mod.) Gaussalg. auf die Form
[mm] \pmat{ 1 & 0 & 0 & \bruch{33}{50} & \bruch{4}{5} & \bruch{2}{5} & \bruch{3}{10} \\ 0 & 1 & 0 & -\bruch{41}{40} & -\bruch{1}{2} & \bruch{1}{2} & -\bruch{3}{8} \\ 0 & 0 & 1 & -\bruch{139}{10} & -\bruch{1}{5} & \bruch{2}{5} & \bruch{9}{20}}
[/mm]
gebracht.
Bei einer quadratischen Matrix, könnt ich die Inverse ja jetz direkt ablesen, aber geht das auch hier?
|
|
|
|
Hallo!
> scheinbar simple Frage: Wie invertiere ich nicht
> quadratische Matrizen?
Also, ich bin mir nicht ganz sicher, ob man das, was du meinst, auch invertieren nennt. Es kann sein, dass man es nur bei quadratischen Matrizen so nennt, aber ich weiß, was du meinst.
> kenn bisher nur den Fall quadratischer Matrizen.
> So hab ich z.b die Matrix
> [mm]\pmat{ \bruch{1}{2} & -2 & 2 & -\bruch{2}{5} \\ 1 & 2 & -1 & 0 \\ \bruch{2}{3} & 0 & -2 & 3}
[/mm]
>
> mit Hilfe v. (mod.) Gaussalg. auf die Form
> [mm]\pmat{ 1 & 0 & 0 & \bruch{33}{50} & \bruch{4}{5} & \bruch{2}{5} & \bruch{3}{10} \\ 0 & 1 & 0 & -\bruch{41}{40} & -\bruch{1}{2} & \bruch{1}{2} & -\bruch{3}{8} \\ 0 & 0 & 1 & -\bruch{139}{10} & -\bruch{1}{5} & \bruch{2}{5} & \bruch{9}{20}}
[/mm]
>
> gebracht.
> Bei einer quadratischen Matrix, könnt ich die Inverse ja
> jetz direkt ablesen, aber geht das auch hier?
Ich weiß zwar nicht so ganz, wie du auf diese Matrix da oben kommst - müsstest du da nicht eine 3 x 4 -Matrix stehen haben?
Jedenfalls glaube ich, dass das theoretisch auch so gehen könnte, bin mir da aber nicht so sicher.
Ansonsten könntest du noch - aber das ist bei deiner Matrix wahrscheinlich viel zu umständlich - es so machen:
[mm] \pmat{ \bruch{1}{2} & -2 & 2 & -\bruch{2}{5} \\ 1 & 2 & -1 & 0 \\ \bruch{2}{3} & 0 & -2 & 3} [/mm] * [mm] \pmat{ a & b & c \\ d & e & f \\ g & h & i \\ j & k & l} [/mm] = I
und jetzt kannst du daraus ein lineares Gleichungssystem aufstellen, mit 12 Unbekannten und 12 Gleichungen, das du dann lösen kannst. Aber wie gesagt: sehr umständlich (bei 2 x 2-Matrizen könnte das sinnvoll sein).
Ich fürchte, das hilft dir nicht wirklich viel, aber ich hab's halt mal versucht...
Viele Grüße
Bastiane
|
|
|
|
|
Status: |
(Mitteilung) Reaktion unnötig | Datum: | 16:08 So 14.11.2004 | Autor: | steelscout |
> > mit Hilfe v. (mod.) Gaussalg. auf die Form
> > [mm]\pmat{ 1 & 0 & 0 & \bruch{33}{50} & \bruch{4}{5} & \bruch{2}{5} & \bruch{3}{10} \\ 0 & 1 & 0 & -\bruch{41}{40} & -\bruch{1}{2} & \bruch{1}{2} & -\bruch{3}{8} \\ 0 & 0 & 1 & -\bruch{139}{10} & -\bruch{1}{5} & \bruch{2}{5} & \bruch{9}{20}}
[/mm]
> Ich weiß zwar nicht so ganz, wie du auf diese Matrix da
> oben kommst - müsstest du da nicht eine 3 x 4 -Matrix
> stehen haben?
> Jedenfalls glaube ich, dass das theoretisch auch so gehen
> könnte, bin mir da aber nicht so sicher.
Naja zu normalen quadr. Matrizen kann man leicht die inverse finden, indem man einfach ne Einheitsmatrix "dranklemmt" und es dann wie ein normales lgs löst. Wenn man es dann so umformt, dass man die Einheitsmatrix (wie oben) auf der anderen Seite stehen hat, ist der rechte Ausdruck die inverse Matrix.
So bei quadr. Matrizen. Leider haben wir nur diesen Fall behandelt und in den Übungen tauchen nun nicht quadr. auf... *grml*
|
|
|
|
|
Status: |
(Antwort) fertig | Datum: | 16:27 So 14.11.2004 | Autor: | zwerg |
moin steelscout!
Mal ne Definition für dich:
Eine Matrix A heißt invertierbar, wenn die zugehörige lineare Abbildung ein Isomorphismus ist. Die Matrix der Umkehrabbildung heißt dann die inverse Matrix und wird mit [mm] A^{-1} [/mm] bezeichnet.
[mm] \to
[/mm]
Jede invertierbare Matrix A ist quadratisch, d.h. A [mm] \in [/mm] M(n [mm] \times [/mm] n, [mm] \IK [/mm] )
[mm] AA^{-1} =A^{-1} [/mm] A = [mm] E_{n} [/mm] wenn A = n [mm] \times [/mm] n Matrix
Was zeigt, das nichtquadratische Matizen nicht invertierbar sind.
gruß zwerg
|
|
|
|